Curso de Assembly

Frederico Lamberi Pissarra
Atualizacdo dos textos originais para UTF-8.
Publicado originalmente no ano de 1994, na Rede Brasileira de Telemética (RBT)
Revisado em 28 de julho de 2016

Prefacio

J& fazem 20 anos desde a primeira publicacdo dessa série de artigos que foi chamado de “Curso”, na
RBT. Eu tinha 25 anos de idade, tinha um PC com processador 286 e, quando adquiri um 386DX
40MHz, escrevi sobre os registradores e novas instrugdes para 386. Estava fazendo experimentos com
o TURBO ASSEMBLER e com o assembler in-line do PASCAL e do Borland C++ 3.1 (que era o meu
IDE preferido, na época). De 14 para c4, muita coisa mudou:

Processadores de 16 bits estdo limitados aos microcontroladores. Ha quase uma década nao
ouco falar do 8086 ou o antigo 286;

Com o advento da moderna arquiteura x86-64 o uso de registradores de segmento (ou
“seletores”, como sdo chamados desde o 386) tornou-se obsoleto — pelo menos a nivel de
aplicacao;

Os compiladores C/C++ tornaram-se tdo poderosos que desenvolver diretamente em assembly é
raramente praticado;

As modernas placas de video e os sistemas operacionais ndo possibilitam mais o acesso direto a

memoria de video e ao chipset. Tudo tem que ser feito por bibliotecas como OpenGL ou
DirectX;

A aritimética de ponto-fixo era uma alternativa a lenta aritimética de ponto-flutuante, que era
muito lenta. Hoje, trabalhar com “floats” e “doubles™ é tao performatico quanto trabalhar com
aritimética inteira;

EMM386 nao é usado ha muito tempo!

Novos conjuntos de registradores estdo disponiveis para o desenvolvedor em assembly. Desde
as extensdes para 64 bits (RAX, RBX etc), até a quantidade deles (15 registradores de uso geral
na arquitetura x86-64). Ainda, temos SIMD (SSE), que disponibiliza registradores para uso em
ponto-flutuante, e de forma paralela!

Multithreading é uma realidade, com CPUs de multiplos “cores”;

O “curso” a seguir é uma velharia. Mas, ao que parece, ainda ajuda muita gente a entender a base do
assembly. Eu penso nesses textos como documentos historicos...

Frederico Lamberti Pissarra
18 de marco de 2014

Conteudo

Aula 1 (Embasamento)

Aula 2 (Aritimetica binaria)

Aula 3 (Registradores Pilha e Flags)

Aula 4 (Instrucoes de armazenamento e blocos)
Aula 5 (Instrucoes Logicas)

Aula 6 (Instrugoes Aritiméticas)

Aula 7 (Instrucoes de comparagao)

Aula 8 (Saltos)

Aula 9 (Interrupgoes)

Aula 10 (Shifts)

Aula 11 (Mais instrucoes de comparagao)
Aula 12 (Usando assembly no TURBO PASCAL)
Aula 13 (Usando assembly em C)

Aula 14 (Usando o TURBO ASSEMBLER)
Aula 15 (Mais TASM)

Aula 16 (Entendendo o EMM386)

Aula 17 (Usando o EMM386)

Aula 18 (O processador 386)

Aula 19 (strlen e strcpy em Assembly)
Aula 20 (Aritimética em ponto-fixo)

Aula 21 (Mexendo com a VGA)

Aula 22 (Latches e bitmasks)

Aula 23 (Mexendo ainda mais na VGA)
Aula 24 (O modo de escrita 1 da VGA)
Aula 25 (O modo de escria 3 da VGA)
Aula 26 (O modo de escrita 2 da VGA)

RBT Curso de Assembly Aula N° 01

Por: Frederico Pissarra

A linguagem ASSEMBLY (e ndo assemblER!) da medo em muita gente!
S6 ndo sei porque! As liguagens ditas de "alto nivel" sdo MUITO
mais complexas que o assembly! 0 programador assembly tem que
saber, antes de mais nada, como estd organizada a memdria da maquina
em que trabalha, a disponibilidade de rotinas pré-definidas na ROM
do micro (que facilita muito a vida de vez em quando!) e os demais
recursos que a maquina oferece.

Uma grande desvantagem do assembly com relacdo as outras
linguagens é que ndo existe tipagem de dados como, por exemplo,

ponto-flutuante... O programador terad que desenvolver as suas
préprias rotinas ou langar mao do co-processador matematico (o TURBO
ASSEMBLER, da Borland, fornece uma maneira de emular o
co-processador). Nao existem funcbes de entrada-saida como PRINT do
BASIC ou o0 Write() do PASCAL... N&o existem rotinas que imprimam
dados numéricos ou strings na tela... Enfim... n&o existe nada de

atil! (Sera?! hehehe)

Pra que serve o assembly entdo? A resposta é: Para que vocé
possa desenvolver as suas proéprias rotinas, sem ter que topar com
bugs ou limitacbes de rotinas ja existentes na ROM-BIOS ou no seu
compilador "C", "PASCAL" ou qualquer outro... Cabe aqui uma
consideracdo interessante: E muito mais produtivo usarmos uma
liguagem de alto nivel juntamente com nossas rotinas em assembly...
Evita-se a "reinvencdo da roda" e ndo temos que desenvolver TODAS as
rotinas necessarias para 0S Nnoss0s programas. Em particular, o
assembly é muito util quando queremos criar rotinas que ndo existem
na liguagem de alto-nivel nativa! Uma rotina ASM bem desenvolvida
pode nos dar a vantagem da velocidade ou do tamanho mais reduzido em
NnossOs programas.

O primeiro passo para comecar a entender alguma coisa de
assembly é entender como a CPU organiza a meméria. Como no nosso
caso a idéia é entender os microprocessadores da familia 80x86 da
Intel (presentes em qualquer PC-Compativel), vamos dar uma olhadela
no modelamento de memdria usado pelos PCs, funcionando sob o MS-DOS
(Windows, 0S/2, UNIX, etc... usam outro tipo de modelamento...
MUITO MAIS COMPLICADO!).

Modelamento REAL da meméria - A segmentacéo

A memdéria de qualquer PC é dividida em segmentos. Cada segmento
tem 64k bytes de tamanho (65536 bytes) e por mais estranho que
pareca o0s segmentos ndo sdo organizados de forma sequencial
(o segmento seguinte ndo comeca logo apds o anterior!). Existe uma
sobreposicao. De uma olhada:

64k (tamanho do segmento 0)

0 1 2 < Numero dos segmentos

16 16
bytes bytes

0 segundo segmento comeca exatamente 16 bytes depois do
primeiro. Deu pra perceber que o inicio do segundo segmento esté
DENTRO do primeiro, j& que os segmentos tem 64k de tamanho!

Este esquema biruta confunde bastante os programadores menos
experientes e, até hoje, ninguém sabe porque a Intel resolveu
utilizar essa coisa esquisita. Mas, paciéncia, é assim que a coisa
funciona!

Para encontrarmos um determinado byte dentro de um segmento
precisamos fornecer o OFFSET (deslocamento, em inglés) deste byte
relativo ao inicio do segmento. Assim, se queremos localizar o
décimo-quinto byte do segmento O, basta especificar 0:15, ou seja,
segmento 0@ e offset 15. Esta notacdo é usada no restante deste e de
outros artigos.

Na realidade a CPU faz o seguinte calculo para encontrar o
"endereco fisico" ou "endereco efetivo" na memoéria:

ENDERECO-EFETIVO = (SEGMENTO - 16) + OFFSET

Ilustrando a complexidade deste esquema de enderecamento,
podemos provar que existem diversas formas de especificarmos um
unico "enderego efetivo" da memodria... Por exemplo, o endereco
0:13Ah pode ser também escrito como:

0001h:012Ah 0002h:011Ah 0003h:010Ah 0004h:00FAh
0005h:00EAh 0006h:00DAh 0007h:00CAh 0008h:00BAh
0009h: 00AAh 000Ah:009Ah 000Bh:008Ah 000Ch:007Ah
000Dh:006Ah 0O0OEh:005Ah 000Fh:004Ah 0010h:003Ah
0011h:002Ah 0012h:001Ah 0013h:000Ah

Basta fazer as contas que vocé verd que todas estas formas darédo
0 mesmo resultado: o endereco-efetivo 0013Ah. Generalizando,
existem, no maximo, 16 formas de especificarmos o mesmo endereco
efetivo! As unicas faixas de enderecos que ndo tem equivalentes e sO
podem ser especificados de wuma uUnica forma s&o o0s desesseis
primeiros bytes do segmento © e os U(ltimos desesseis bytes do
segmento OFFFFh.

Normalmente o programador ndo tem que se preocupar com esse tipo
de coisa. O compilador toma conta da melhor forma de enderecgamento.
Mas, como a toda regra existe uma excessdo, a informacdo acima pode

ser 0til algum dia.

A BASE NUMERICA HEXADECIMAL E BINARIA (para os novatos...)

Alguns talvez n&do tenham conhecimento sobre as demais bases
numéricas usadas na area informata. E muito comum dizermos '"cdédigo
hexadecimal", mas o que significa?

E bastante 1logico que usemos o sistema decimal como base para
todos os célculos matemidticos do dia-a-dia pelo simples fato de
temos DEZ dedos nas maos... fica facil contar nos dedos quando
precisamos.

Computadores usam o sistema binario por um outro motimo simples:
Existem apenas dois niveis de tensdo presentes em todos os circuitos
légicos: niveis baixo e alto (que s&o chamados de 0 e 1, por
conveniéncia... para podermos medi-los sem ter que recorrer a um
multimetro!). 0 sistema hexadecimal também tem o seu lugar: é a
forma mais abreviada de escrever um conjunto de bits.

Em decimal, o numero 1994, por exemplo, pode ser escrito como:
1994 = (1 - 103) + (9 . 102) + (9 - 101) + (4 - 10°)

Note a base 10 nas poténcias. Faco agora uma pergunta: Como
representariamos o mesmo numer se tivessemos 16 dedos nas maos?

= Primeiro teriamos que obter mais digitos... 0 até 9 ndo séo
suficientes. Pegaremos mais 6 letras do alfabeto para suprir
esta deficiencia.

= Segundo, Tomemos como inspiracdo um odbémetro (equipamento
disponivel em qualquer automodvel - € 0 medidor de
gquilometragem!): Quando o algarismo mais a direita (o menos
significativo) chega a 9 e ¢é incrementado, o que ocorre?...
Retorna a © e o proximo é incrementado, formando o 10. No
caso do sistema hexadecimal, isto s6 acontece quando o ultimo
algarismo alcanca F e é incrementado! Depois do 9 vem o0 A,
depois o B, depois o C, e assim por diante... até chegar a
vez do F e saltar para 0, incrementando o proximo algarismo,
certo?

Como contar em base diferente de dez € uma situacdo ndo muito

intuitiva, vejamos a regra de conversdo de bases. Comecaremos pela

base decimal para a hexadecimal. Tomemos o0 numero 1994 como
exemplo. A regra ¢ simples: Divide-se 1994 por 16 (base
hexadecimal) até que o quoeficiente seja zero... toma-se 0s restos

e tem-se o numer convertido para hexadecimal:

1994 + 16 = Quociente = 124, Resto = 10 = 10=A
124 + 16 = Quociente = 7, Resto = 12 = 12=C
7 + 16 = Quociente = 0, Resto = 7 = 7=7

Toma-se entdo os restos de baixo para cima, formando o numero em

hexadecimal. Neste caso, 1994=7CAh

Acrescente um 'h' no fim do numero para sabermos que se trata da
base 16, do -contrario, se olharmos um numero "7CA" poderiamos
associa-lo a qualquer outra base numérica (base octadecimal por
exemplo!)...

0 processo inverso, hexa — decimal, é mais simples... basta
escrever o numer, multiplicando cada digito pela poténcia correta,
levando-se em conta a equivalencia das letras com a base decimal:

7CAh = (7 - 162) + (C - 16%) + (A - 16°) =
(7 - 162) + (12 - 161) + (10 - 16°) =
1792 + 192 + 10 = 1994

As mesmas regras podem ser aplicadas para a base binaria (que
tem apenas dois digitos: 0 e 1). Por exemplo, o0 numero 12 em
binario fica:

12 + 2 = Quociente = 6, Resto = 0
6 + 2 = Quociente = 3, Resto = 0
3+ 2 = Quociente = 1, Resto = 1
1+ 2 = Quociente = 0, Resto = 1
12 = 1100b

Cada digito na base binaria é conhecido como BIT (Binary digIT -

ou digito binario, em 1inglés). Note o 'b' no fim do numero
convertido...
Faca o processo inverso... Converta 10100110b para decimal.

A vantagem de usarmos um numero em base hexadecimal é que cada
digito hexadecimal equivale a exatamente quatro digitos binarios!
Faca as contas: Quatro bits podem conter apenas 16 numeros (de 0 a
15), que é exatamente a quantidade de digitos na base hexadecimal.

RBT Curso de Assembly Aula N° 02

Por: Frederico Pissarra

Mais alguns conceitos sdo necessarios para que o pretenso

programador ASSEMBLY saiba o que estéd fazendo. Em eletrbnica
digital estuda-se a algebra booleana e aritimética com nuUmeros
binarios. Aqui esses conceitos também sdo importantes... Vamos

comecar pela aritimética binaria:

A primeira operag¢do basica - a soma - ndo tem muitos
mistérios... basta recorrer ao equivalente decimal. Quando somamos
dois numeros decimais, efetuamos a soma de cada algarismo em
separado, prestando atencdo aos '"vai um" que ocorrem entre um
algarismo e outro. Em binario fazemos o mesmo:

10160b + 0110b = ?
111 < "Vai uns"
10106b
+ 01106b

10000b

Ora, na base decimal, quando se soma - por exemplo - 9 e 2, fica
1 e "vai um"... Tomemos o exemplo do oddmetro (aquele indicador de
guilometragem do carro): 09 - 10 - 11

Enquanto na base decimal existem 10 algarismos (0 até 9), na
base binaria temos 2 (0 e 1). O odbmetro ficaria assim:
00b - 01b - 16b - 11b

Portanto, 1b + 1b = 10b ou, ainda, Ob e "vai um".

A subtracdo ¢é mais complicada de entender... Na base decimal
existem os numeros negativos... em binario ndo! (Veremos depois
como '"representar" um numero negativo em binario!). Assim, 1b - 1b
= Ob (logico), 1b - @b = 1b (outra vez, evidente!), 0b - Ob = 0Ob
(hehe... vocé deve estar achando que eu estou te sacaneando, né?),
mas e Ob - 1b = ?7??7??

A solucdo é a seguinte: Na base decimal quando subtraimos um
algarismo menor de outro maior costumamos "tomar um emprestado" para
que a conta fique correta. Em binario a coisa funciona do mesmo
jeito, mas se nao tivermos de onde "tomar um emprestado" devemos
indicar que foi tomado um de qualquer forma:

Ob - 1b = ?

1 — Tomamos esse um emprestado de algum lugar!

Ob (ndo importa de onde!)
- 1b

1b

Esse "1" que apareceu por magica é conhecido como BORROW. Em um
ndimero binario maior basta usar o mesmo artificio:

1010b - 0101b = ?
11 —~ 0s "1"s que foram tomados emprestados séo
10106b subtraidos no proximo digito.
- 0101b
0101b
Faca a conta: 0000b - 0001b, vai acontecer uma coisa
interessante! Faca a mesma conta usando um programa, ou calculadora
cientifica, que manipule numeros binarios... O resultado vai ser

ligairamente diferente por causa da limitac&o dos digitos suportados
pelo software (ou calculadora). Deixo a conclusdo do "por que"
desta diferenca para vocé... (Uma dica, faca a conta com os "n"
digitos suportados pela calculadora e teréd a explicacéo!).

Representando numeros negativos em bindario

Um artificio da algebra booleana para representar um numero
interiro negativo €é wusar o Gltimo bit como indicador do sinal do
numero. Mas, esse artificio gera uma segunda complicacéo...

Limitemos esse estudo ao tamanho de um byte (8 bits)... Se o
bit 7 (a contagem comeca pelo bit @ - mais a direita) for @ o numero
representado é positivo, se for 1, é negativo. Essa é a diferencga
entre um "char" e um "unsigned char" na linguagem C - ou um "char" e
um "byte" em PASCAL (Note que um "unsigned char" pode variar de 0
até 255 - 0000OOEOb até 11111111b - e um "signed char" pode variar
de -128 até 127 - exatamenta a mesma faixa, porém um tem sinal e o
outro nao!).

A complicacdo que falei acima é com relacdo & representacdo dos
nuimeros negativos. Quando um nuamero ndo € nagativo, basta
converté-lo para base decimal que vocé sabera qual é esse numero, no
entanto, numeros negativos precisam ser "complementados" para que
saibamos o numero que estéd sendo representado. A coisa N—0 funciona
da seguinte forma:

00001016b
100010106b

10
-10 (ERRADO)

Ndo basta "esquecermos" o bit 7 e lermos o restante do byte. O
procedimento correto para sabermos que numero esta sendo
representado negativamente no segundo exemplo é:

= Inverte-se todos os bits e,
= Soma-se 1 ao resultado

100010106b - 01110101b + 0000E001b - 011101106b
01110110b = 118

Logo:

10001016b = -118

Com isso podemos explicar a diferenca entre os extremos da faixa
de um "signed char":

= 0s numeros positivos contam de 00000OEOb até 01111111b, isto
é, de 0 até 127.

= 0S numeros negativos contam de 10000000b até 11111111b, isto
é, de -128 até -1.

Em "C" (ou PASCAL), a mesma légica pode ser aplicada aos "int" e
"long" (ou INTEGER e LONGINT), s6é que a quantidade de bits sera
maior ("int" tem 32 ou 16 bits de tamanho, de acordo com a
arquitetura, e "long" tem 32).

Ndo se preocupe MUITO com a representacdo de numeros negativos
em binario... A CPU toma conta de tudo 1isso sozinha... mas, as
vezes, Vvocé tem que saber que resultado podera ser obtido de uma
operacdo aritimética em seus programas, ok?

As outras duas operacdes matematicas bésicas (multiplicacdo e
divisdo) tanbém estdo presentes nos processadores 80x86... Mas, néo
necessitamos ver como o processo é feito a nivel binario. Confie na
CPU!)

RBT Curso de Assembly Aula N° 03

Por: Frederico Pissarra

Comecemos a dar uma olhadela na arquitetura dos
microprocessadores da familia INTEL 80x86... Vamos aos
registradores!

Entenda o0s registradores como se fossem varidveis que 0
microprocessador disponibiliza ao sistema. TODOS os registradores
tém 16 bits de tamanho e aqui vai a descricdo deles:

AX

BX

Registradores de uso geral
CX

DX

SI |—— indice FONTE (Source Index)

DI —— 1indice DESTINO (Destination Index)

SP |—— Apontador de pilha (Stack Pointer)

BP |—— Apontador de base (Base Pointer)

CS |—— Segmento de Coégido (Code Segment)

DS |—— Segmento de Dados (Data Segment)

ES |—— Segmento de dados Extra (Extra data Segment)

SS |~ Segmento de Pilha (Stack Segment)

IP |—— Apontador de instrucdo (Instruction Pointer)

Flags |——— Sinalizadores

Por enquanto vamos nos deter na descricdo dos registradores uso
geral... Eles podem ser subdivididos em dois registradore de oito
bits cada:

AX (16 bits) BX (16 bits)

AH AL BH BL
15 8 7 (0] 15 8 7 (0]
CX (16 bits) DX (16 bits)
1 1
CH CL DH DL
15 8 7 (C] 15 8 7 (C]
AH é o byte mais significativo do registrador AX, enquanto que
AL é o0 menos significativo. Se alterarmos o conteudo de AL,
estaremos alterando o byte menos significativo de AX ao mesmo
tempo... N&o existem registradores de oito bits em separado...
tudo é uma coisa so6. Portanto, ao manipularmos AH, estaremos

manipulando AX ao mesmo tempo!

0 nome de cada registrador tem o seu sentido de ser... "A" de

AX quer dizer que este registrador €é um "acumulador" (usado por
default em algumas operacOes matematicas!), por exemplo...

AX - Acumulador

BX - Base

CX - Contador

DX - Dados

0 "X" de AX significa "eXtended". "H" de AH significa "High
byte".

Embora estes registradores possam ser usados sem restricles, ¢é
interessante atribuir uma funcdo para cada um deles nos nossos
programas sempre que possivel... Isto facilita a leitura do cddigo
e nos educa a seguirmos uma linha de raciocinio mais concisa...
Mas, se for de sua preferéncia ndo seguir qualquer padré@o no uso
desses registradores, ndo se preocupe... ndo haverad qualquer
desvantagem nisso (Well... depende do <cdédigo, as vezes somos
obrigados a usar determinado registrador!).

Alguns pontos importantes quanto a esses nomes serdo observados

no decorrer do curso... Por exemplo, certas instrucdes usam AX (ou
AL, ou AH) e somente ele, ndo permitindo o uso de nenhum outro
registrador... Outras, wusam CX para contar, etc... essas

instrucdes especificas serdo vistas em outra oportunidade.

Os registradores SI e DI s&do wusados como indices para tabelas.
Em particular, SI é usado para leitura de uma tabela e DI para
escrita (fonte e destino... lembra algum procedimento de copia,
nao?). No entanto, esses registradores podem ser usados com outras
finalidades... Podemos inclui-los no grupo de "registradores de uso
geral", mas assim como alguns registradores de uso geral, eles tém
aplicacdo exclusiva em algumas instrugbBes, SI e DI s&o usados
especificamente como indices em instrucdes que manipulam blocos
(também veremos isso mais tarde!).

Os registradores CS, DS, ES e SS armazenam 0s segmentos onde

estdo o cédigo (programa sendo executado), os dados, os dados
extras, e a pilha, respectivamente. Lembre-se que a meméria é
segmentada em blocos de 64kbytes (dé uma olhada na primeira mensagem
dessa série).

Quando nos referimos, através de alguma instrucdo, a um endereco
de meméria, estaremos nos referindo ao OFFSET dentro de um segmento.
0 registrador de segmento wusado para localizar o dado no offset
especificado vai depender da propria instrucéo... Um exemplo em
assembly:

MOV AL, [1D4Ah]

0 numero hexadecimal entre os colchetes é a indicacdo de um
offset em um segmento... Por default, a maioria das instruc¢des usa
0 segmento de dados (valor em DS). A instrugdo acima é equivalente
a:

AL = DS:[1D4Ah]

Isto é, em AL sera colocado o byte que estd armazenado no offset
1D4Ah do segmento de dados (valor em DS). Veremos mais sobre os
segmentos e as instrucgbes mais tarde :)

Se quisessemos localizar o byte desejado em outro segmento (mas
no mesmo offset) devemos especificar o registrador de segmento na
instrucéo:

MOV AL, ES: [1D4Ah]

Agqui o valor de ES sera usado.

0 registrador IP (Instruction Pointer) é o offset do segmento de
cédigo que contém a proxima instrucdo a ser execuatda. Este
registrador nédo é acessivel por qualquer instrucdo (pelo menos néo

pelas documentadas pela Intel)... é de uso interno do
microprocessador. No entanto existem alguns macetes para
conseguirmos obter o seu conteudo (o que na maioria das aplicacbes
ndo € necessario... Para que conhecer o enderegco da proxima

instrucdo se ela var ser executada de qualquer jeito?).

0 registrador SP é o offset do segmento SS (segmento de pilha)
onde o préximo dado vai ser empilhado. A pilha serve para armazenar
dados que posteriormente podem ser recuperados sem que tenhamos que
usar um dos registradores para esse fim. Também é usada para
armazenar o endereco de retorno das sub-rotinas. A pilha "cresce"
de cima para baixo, isto é, SP é decrementado cada vez que um nhovo
dado é colocado na pilha. Note também que existe um registrador de
segmento exclusivo para a pilha... SP sempre esta relacionado a esse
segmento (SS), como foi dito antes.

Para ilustrar o funcionamento da pilha, no grafico abaixo
simularemos o empilhamento do conteludo do registrador AX através da

instrucéo:

PUSH AX

AX = A527h (Valor em AX)

???7?h SP =n ???7?h
A527h SP =n - 2
(antes de PUSH AX) (depois de PUSH AX)

Observe que SP sempre aponta para o Ultimo dado empilhado.

Na realidade SP ¢é decrementado de duas posicBes ao invés de
apenas uma... mas, esse detalhe deixo para mais tarde.

0 registrador BP pode ser usado como apontador para a base da
pilha (j& que, por default, estd relacionado a SS) ou como um
registrador de uso geral... depende do seu programa. Veremos 1SsoO
detalhadamente mais tarde.

Um dos registradores mais importantes de qualquer
microprocessador é o de "Flags". Eis uma descricdo dos bits deste
registrador (a descrigdo abaixo aplica-se ao 8086. Normalmente néo
acessamos diretamente o registrador de flags - embora possamos

fazé-lo - por isso ndo é conveniente assumirmos que os bits estéo
sempre no mesmo lugar para qualquer microprocessador da familia
80x86!):

15 (0]

Carry

Parity

Auxiliar Carry

Zero

Signal

Trap

Interrupt Enable Flag
Direction

OverFlow

CQUHAEAWN>»TO
L1 1 O | I A A I DR 1

= carry:

Esse flag é setado sempre quando houver "vai um" depois de
uma adicdo ou quando hé& BORROW depois de uma subtracdo. Ou
guando, numa operacdo de deslocamento de bits, o bit mais ao
extremo for deslocado para fora do dado (suponha um byte... se

todos os bits forem deslocados em uma posicdo para a direita, o
gue acontece com o bit 0?... Resposta: Vai para o carry!)

w Parity:

Depois de wuma instrucdo aritimética ou 1légica este bit
informa se o resultado tem um numero par de "1"s ou néo.

w Auxiliar Carry:

Igual ao carry, mas indica o "vai um" no meio de um dado (no
caso de um byte, se houve "vai um" do bit 3 para o bit 4!).

= Zero:

Depois de wuma operagdo aritimética ou 1loégica, esse flag
indica se o resultado é zero ou néo.

= Signal:

Depois de uma instrucdo aritimética ou ldgica, este flag ¢é
uma coOpia do bit de mais alta ordem do resultado, isto é, seu
sinal (dé uma olhada na '"representacdo de numeros negativos em
binario" no texto anterior!).

= Trap:

Quando setado (1) executa 1instrucgcbes passo-a-passo... N&o
nos interessa estudar esse bit por causa das diferencas de
implementacdo deste flag em toda a familia 80x86.

= Interrupt Enable Flag

Habilita/Desabilita o reconhecimento de interrupcdes
mascaréaveis pela CPU. Sobre interrupc¢bes, veremos mais tarde!

= Direction:

Quando usamos instrucdes de manipulacdo de blocos,
precisamos especificar a direg¢&o que usaremos (do inicio para o
fim ou do fim para o inicio).

Quando D=0 a direcd@o é a do inicio para o fim... D=1, entéo

a direcdo é contréaria!
w OverFlow:

Depois de uma instrucdo aritimética ou ldogica, este bit
indica se houve mudanca no bit mais significativo, ou seja, no
sinal. Por exemplo, se somarmos FFFFh + 0001h obteremos 00h. O
bit mais significativo variou de 1 para 0 (o counteudo inicial
de um registrador era FFFFh e depois da soma foi para 0006h),
indicando que o resultado saiu da faixa (overflow) - ora, FFFFh
+ 0001h = 10000h, porém um registrador tem 16 bits de tamanho e
0 resultado cabe em 17 bits. Neste exemplo, o bit de carry
também serd setado pois houve "vai um" do bit 15 para o
inexistente bit 16, mas ndo confunda o flag de overflow com o
carry!

Quando aos demais bits, ndo se pode prever seus estados légicos
(1 ou 0).

Na proxima "aula" comecaremos a ver algumas instrucbes do
microprocessador 8086. Ainda nao escreveremos henhum programa, a
intencdo é familiarizéd-lo com a arquitetura do microprocessador
antes de comegarmos a colocar a mdo na massa... tenha um pouco de

paciéncial :)

RBT Curso de Assembly Aula N° 04

Por: Frederico Pissarra

Comecaremos a ver algumas instrugfBes do microprocessador 8086

agora. Existem os seguintes tipos de instrug0es:

w Instrucdes Aritiméticas

= Instrucdes Logicas

= Instrucdes de Controle de Fluxo de Programa

w Instrucdes de manipulacdo de flags

= Instrucdes de manipulacdo da pilha

= Instrucdes de manipulacdo de blocos

w Instrucdes de manipulac&@o de registradores/dados
= Instrucdes de Entrada/Saida

Vamos comegar com as instrucdes de manipulacéo de

registradores/dados por serem estas as mais faceis de entender.

Instrucdo MOV

MOV tem a finalidade de MOVimentar um dado de um lugar para
outro. Por exemplo, para carregar um registrador com um determinado
valor. 1Isto é feito com MOV:

MOV AX, 0001h

E a mesma coisa que dizer: "AX = 1". Na verdade, movimentamos o
valor 1 para dentro do registrador AX.

Podemos mover o conteldo de um registrador para outro:

MOV BH, CL

E a mesma coisa que "BH = CL"!

Os registradores de segmento ndo podem ser inicializados com MOV
tomando um parametro imediato (numérico). Esses registradores séo
inicializados indiretamente:

MOV DS, 0 ; ERRADO!!!
MOV AX, 0
MOV DS,AX ; CORRETO!

Carregar um registrador com o conteudo (byte ou word, depende da
instrucéo!) armazenado em um segmento é simples, basta especificar o
offset do dado entre colchetes. Atencdo que o segmento de dados
(DS) é assumido por default com algumas excessdes:

MOV AL, [OFFFFh]

A instrucdo acima, pega o byte armazenado no endereco DS:FFFFh e
coloca-o em AL. Sabemos que um byte vai ser 1lido do offset
especificado porque AL tem 8 bits de tamanho.

Ao 1invés de usarmos um offset imediato podemos usar um
registrador:

MOV BX, OFFFFh
MOV CH, [BX]

Neste caso, BX contém o offset e o byte no endereco DS:BX é
armazenado em CH. Note que o registrador wusado como 1indice
obrigatoriamente deve ser de 16 bits.

Uma observacéo quanto a essa modalidade: Dependendo do
registrador usado como offset, o segmento default poderd ser DS ou
SS. Se ao invés de BX usassemos BP, o segmento default seria SS e
ndo DS - de uma olhada no diagrama de distribuicdo dos registradores
no texto anterior. BP foi colocado no mesmo bloco de SP, indicando
que ambos estdo relacionados com SS (Segmento de pilha) - Eis uma
tabela das modalidades e dos segmentos default que podem ser usados
como offset:

Offset usando registros Segmento default
[SI + deslocamento] DS
[DI + deslocamento] DS
[BP + deslocamento] SS
[BX + deslocamento] DS
[BX + SI + deslocamento] DS
[BX + DI + deslocamento] DS
[BP + SI + deslocamento] SS
[BP + DI + deslocamento] SS

0 "deslocamento" pode ser suprimido se for 0.

Vocé pode evitar o segmento default explicitando um registrador
de segmento na instrucéo:

MOV DH, ES: [BX] ;Usa ES ao invés de DS
MOV AL,CS:[SI + 4] ;Usa CS ao invés de DS

Repare que tenho usado os registradores de 8 bits para armazenar
os dados... Pode-se usar os de 16 bits também:

MOV ES:[BX], AX ; Poe o0 valor de AX para ES:BX

S6 que neste caso serdo armazenados 2 bytes no endereco ES:BX.
O primeiro byte é o menos significativo e o segundo o mais
signigicativo. Essa instrucdo equivale-se a:

MOV ES:[BX],AL ; Instrucbess que fazem a mesma
MOV ES:[BX + 1],AH ;coisa que MOV ES:[BX],AX

Repare também que ndo é possivel mover o conteudo de uma posicgéo
da meméria para outra, diretamente, wusando MOV. Existe outra
instrucé@o que faz isso: MOVSB ou MOVSW. Veremos essas instrucgoes
mais tarde.

Regra geral: Um dos operandos TEM que ser um registrador! Salvo
no caso da movimentacdo de um imediato para uma posicdo de memdria:

MOV [DI], [SI] ; ERRO!
MOV [BX],0 ; OK!

Para ilustrar o uso da instrug¢do MOV, eis um pedaco do cd6digo
usado pela ROM-BIOS do IBM PS/2 Modelo 50Z para verificar a
integridade dos registradores da CPU:

MOV AX, OFFFFh ;Poe OFFFFh em AX
MOV DS, AX
MOV BX, DS
MOV ES, BX
MOV CX,ES
MOV SS,CX
MOV DX, SS
MOV SI, DX
MOV DI, SI
MOV BP,DI
MOV SP,BP

Se o conteudo de BP ndo for OFFFFh entdo a CPU estda com algum
problema e o computador ndo pode funcionar! O0s flags s&o testados
de uma outra forma...)

XCHG

Esta instrucdo serve para trocarmos o conteudo de um registrador
pelo outro. Por exemplo:

XCHG AH, AL

Se AH=1Ah e AL=6Dh, apés esta instrucdo AH=6Dh e AL=1Ah por

causa da troca...

Pode-se usar uma referéncia & memdria assim como em MOV... com
a mesma restricdo de que um dos operandos TEM que ser um
registrador. Ndo ha possibilidade de usar um operando imediato.

MOVSB e MOUSW

Essas instrucbes suprem a deficiéncia de MOV quanto a
movimentacdo de dados de uma posicdo de memdéria para outra
diretamente. Antes de ser chamada os seguintes registradores tem
que ser inicializados:

DS:SI —~ DS e SI tém o enderecgo fonte
ES:DI -~ ES e DI tém o endereco destino

Dai podemos executar MOVSB ou MOVSW.
MOVSB move um byte, enquanto MOVSW move um word (16 bits).

Os registradores SI e DI sao incrementados ou decrementados de
acordo com o flag D (Direction) - Veja discussédo sobre os flags na
mensagem anterior. No caso de MOVSW, SI e DI serao incrementados
(ou decrementados) de 2 posicdes de forma que DS:SI e ES:DI apontem
sempre para a proéxima word.

STOSB e STOSW

Essas instrugbes servem para armazenar um valor que estd em AX
ou AL (dependendo da instrucdo usada) no endereco apontado por
ES:DI. Entdo, antes de ser chamada, o0s seguintes registradores
devem ser inicializados:

AX - Valor a ser armazenado se usarmos STOSW
AL - Valor a ser armazenado se usarmos STOSB
ES:DI - Endereco onde o dado seréd armazenado

Depois da execucdo da instrucdo o registrador DI seréa
incrementado ou decrementado de acordo com o flag D (Direction). DI
sera incrementado de 2 no case de usarmos STOSW, isto garante que
ES:DI aponte para a proxima word.

LODSB e LODSW

Essas instrucgbes servem para ler um valor que estd no endereco
apontado por DS:SI e armazend-lo em AX ou AL (dependendo da

instrucdo usada). Entdo, antes de ser chamada, o0s seguintes
registradores devem ser inicializados:

DS:SI - Endereco de onde o dado sera lido

Depois da execucao da instrucdo o registrador SI seré
incrementado ou decrementado de acordo com o flag D (Direction). No
caso de usarmos LODSW, SI sera incrementado de 2 para garantir que
DS:SI aponte para a proéxima word.

Outras instrucbes de manipulacdo de registros/dados

Existem ainda as instrucdes LEA, LES e LDS.
w LEA:

LEA é, basicamente, igual a instrucdo MOV, com apenas uma
diferenca: o operando "fonte" ¢é wum endereco (precisamente: um

"offset"). LEA simplesmente calcula o endereco e transfere para o
operando "destino", de forma que as 1instrucdes abaixo sao
equivalentes:

MOV BX, 100h

LEA BX, [100h]

Porém, a instrucéo:

LEA DX, [BX + SI + 10h]

Equivale a:

MOV DX, BX

ADD DX, SI ; DX = DX + SI

ADD DX, 10h ; DX = DX + 16h

Repare que apenas uma instrug8o faz o servigo de trés!! Nos

processadores 286 e 386 a diferenca ¢€é significativa, pois, no
exemplo acima, LEA gastara 3 (nos 286) ou 2 (nos 386) ciclos de
maquina enquando o equivalente gastara 11 (nos 286) ou 6 (nos 386)
ciclos de maquina! Nos processadores 8088/8086 a diferenca nédo é
tao grande...

Obs:
Consideremos cada ciclo de maquina seria, aproximadamente,
num 386DX/40, algo em torno de 300ns - ou 0,0000003s. E uma
medida empirica e n&o expressa a grandeza real (depende de
uma série de fatores ndo considerados aqui!).

0 operando "destino" é sempre um registrador. 0 operando

"fonte" é sempre um endereco.
= |LDS e LES

Existe wuma forma de carregar um par de registradores
(segmento:offset) de uma s6 vez. Se quisermos carregar DS:DX basta
usar a instrucdo LDS, caso o alvo seja ES, usa-se LES.

Suponhamos que numa posicdo da meméria tenhamos um double word
(nimero de 32 bits) armazenado. A word mais significativa
correspondendo a um segmento e a menos signigicativa a um offset
(esse é o caso da tabela dos vetores de interrupc¢do, que descreverei
com poucos detalhes em uma outra oportunidade!). Se usamos:

LES BX, [SI]

0 par ES:BX sera carregado com o double word armazenado no
endereco apontado por DS:SI (repare no segmento default que
discutimos em um texto anterior!). A instrugdo acima é equivalente
a:

MOV BX, [SI+2]
MOV ES, BX
MOV BX, [SI]

De novo, uma instrucdo substitui trés!

Manipulando blocos... parte I

As instruc¢cbes MOVSB, MOVSW, STOSB, STOSW, LODSB e LODSW podem
ser usadas para lidar com blocos de dados. Para isto, basta indicar
no registrador CX a quantidade de dados a serem manipulados e
acrescentar REP na frente da instrucao. Eis um trecho de uma
pequena rotina que apaga o video em modo texto (80 x 25 colorido):

MOV AX, 0B80Gh

2000 words).
Preenche os 2000 words com AX

MOV ES, AX ; Poe em ES o segmento do video
MOV DI, 0 ; Comeca no Offset O
MOV AH,7 ; AH = atributo do caracter

; 7 = cinza com fundo preto
MOV AL, " ' ; AL = caracter usado para apagar
MOV CX, 2000 ; CX = contador (4000 bytes ou

4

REP STOSW

0 modificador REP diz a instrucdo que esta deve ser executada CX
vezes. Note que a cada execugdo de STOSW o registrador DI apontara
para a proxima word.

Suponha que queiramos mover 4000 bytes de alguma posicdo da
meméria para o video, preenchendo a tela com esses 4000 bytes:

MOV AX, 0B80Oh

MOV ES, AX ; Poe em ES o segmento do video

MOV AX,SEG TABELA

MOV DS, AX ; Poe em DS o segmento da tabela

MOV SI,OFFSET TABELA ; Comeca no offset inicial da tabela
MOV DI, 0 ; Comeca no Offset O

MOV CX, 4000 ; CX = contador (4000 bytes)

REP MOVSB ; Copia 4000 bytes de DS:SI para ES:DI

Nota: O modificador REP s6 pode ser preceder as seguintes
instrucdes: MOVSB, MOVSW, STOSB, STOSW, LODSB, LODSW, CMPSB, CMPSW,
SCASB, SCASW, OUTSB, OUTSW, INSB, INSW. As instruc¢des nao vistas no
texto acima serdo detalhadas mais tarde...

Existem mais algumas instrugdbes de manipulagéo de
registradores/dados, bem como mais algumas de manipulacdo de blocos.
Que ficardo para uma proéxima mensagem.

RBT Curso de Assembly Aula N° 05

Por: Frederico Pissarra

Depois de algumas instrucdes de movimentagcdo de dados vou
mostrar a mecénica da logica booleana, bem como algumas instrucgdes.

A légica booleana baseia-se nas seguintes operac¢des: AND, OR,
NOT. Para simplificar a minha digitacdo vou wusar a notacédo
simplificada: & (AND), | (OR) e ~ (NOT). Essa notagcdo ¢é wusada na
linguagem C e em muitos manuais relacionados a hardware da IBM.

= QOperagdo AND:

A operacdo AND funciona de acordo com a seguinte tabela-verdade:

S=A&B
A B S
0 0 0
0 1 0
1 (0] (0]
1 1 1

Note que o resultado (S) sera 1 apenas se A "E" B forem 1.

Aplicando esta ld6gica bit a bit em opera¢bes envolvendo dois
bytes obteremos um terceiro byte que sera o primeiro AND o segundo:

>
1

01010111b B = 00001111b

S=A&B- 01010111b
& 00001111b

00000111b

Uma das utilidades de AND ¢é resetar um determinado bit sem
afetar os demais. Suponha que queira resetar o bit 3 de um
determinado byte. Para tanto basta efetuar um AND do byte a ser
trabalhado com o valor 11110111b (Apenas o bit 3 resetado).

Eis a sintaxe da instrucdo AND:

AND AL,11110111b
AND BX, 8000h

AND DL, CL

AND [DI],AH

Lembrando que o operando destino (o mais a esquerda) deve sempre

ser um registrador ou uma referencia a meméria. 0 operando a
direita (fonte) pode ser um registrador, uma referéncia a meméria ou
um valor imediato, com a restricdo de que ndo podemos usar
referéncias a memdéria nos dois operandos.

A instrucdo AND afeta o0s FLAGS Z, S e P e zera os flags Cy
(Carry) e 0 (veja os flags em alguma mensagem anterior a esta).

= QOperacdo OR:

>
w
(72}

RrRroo
RreRro
RPRrRrO

Note que S serda 1 se A "OU" B forem 1.

Da mesma forma que AND, aplicamos essa 1ldégica bit a bit
envolvendo um byte ou word através de uma instrucdo em assembly.
Vejamos um exemplo da utilidade de OR:

A = 01010111b B = 10000000b
S=A| B~ 01010111b
| 10000000b
11010111b

A operacdo OR ¢é ideal para setarmos um determinado bit sem
afetar os demais. No exemplo acima B tem apenas o bit 7 setado...
depois da operacdo OR com A o resultado final foi A com o bit 7
setado! :)

A sintaxe de OR é a mesma que a de AND (obviamente trocando-se
AND por OR). Os flags afetados sdo os mesmos da instrucdo AND!
= QOperacdo NOT:

NOT simplesmente inverte todos os bits de um byte ou word:

S = -~A
A S
0 1
1 (0]

A sintaxe da instrucdo em assembly é a seguinte:

NOT AL
NOT DX
NOT [SI]

= Operacdo XOR:

A operacdo XOR é derivada das trés acima. A equac@o booleana
que descreve XOR é:

S = (A AND ~B) OR (~A AND B) = A A B

Que na tabela-verdade fica:

>
w
(2]

RrRrOO
RoOoRro
[l N N O]

Uso o simbolo A para o XOR aqui. XOR funciona da mesma forma
que OR, s6 que o resultado sera 1 se APENAS A ou APENAS B for 1,
melhor dizendo: Se ambos forem diferentes.

XOR é muito Gtil quando se quer inverter um determinado bit de
um byte ou word sem afetar os outros:

>
1

01010111b B = 00001111b

wn
1

ANB - 01010111b
A 00001111b

01011000b

No exemplo acima invertemos apenas o0s quatro bits menos
significativos de A.

A sintaxe e os flags afetados sdo os mesmos que AND e OR.

RBT Curso de Assembly Aula N° 06

Por: Frederico Pissarra

Instrugfes aritiméticas sdo o todpico de hoje. Ja discuti,
brevemente, os flags e o0s sistemas de numeragdo. Aqui vai uma
aplicacado pratica:

= Soma:
A soma ¢é feita através das instrucdes ADD e ADC. A diferenca

entre elas é que uma faz a soma normalmente e a outra faz a mesma
coisa acrecentando o conteudo do flag CARRY. Eis a sintaxe:

ADD AL, 106h
ADC AH, 22h

ADD AX, 2216h

As duas primeiras instrucdes fazem exatamente a mesma coisa que
a terceira. Note que na primeiria somamos AL com 10h e o resultado
ficara em AL (se ocorrer "vai um" nesta soma o flag CARRY sera
setado). A segunda instrucdo soma AH com 22h MAIS o carry
resultante da primeira instrucdo e o resultado ficara em AH
(novamente setando o flag carry se houver outro "vai um"!). A
terceira instrucdo faz a mesma coisa porque soma 2210h a AX, ficando
0 resultado em AX e o possivel "vai um" no carry.

Todos os flags sdo afetados apds a execucdo de wuma das
instrucdes de soma, exceto: I, D e Trap.
w Subtracéo

Semelhante as instrucbes de soma, existem duas instrucbes de
subtracdo: SUB e SBB. A primeira faz a subtracdo simples e a
segunda faz a mesma coisa subtraindo também o conteudo prévio do

flag CARRY (como é uma subtragdo o CARRY é conhecido como BORROW!).

A sintaxe:

SUB AL, 1
SBB AH, 0

SUB AX,1

Como no exemplo anterior, as duas primeiras instrucdes fazem
exatamente o que a terceira faz... O0s flags afetados seguem a mesma
regra das instrug¢des de soma!

= Incremento e decremento:

As instrugdes INC e DEC sdo usadas no lugar de ADD e SUB se
quisermos incrementar ou decrementar o conteldo de algum registrador
(ou de uma posicdo de memdéria) de uma unidade. A sintaxe é simples:

DEC AX
INC BL

0s flags afetados seguem a mesma regra de uma instrucdo de soma
ou uma de subtracéo!

w Multiplicacéo:

0Os processadores da familia 80x86 possuem instrucdes de
multiplicacdo e divisdo inteiras (ponto flutuante fica pro 8087).
Alguns cuidados devem ser tomados quando usarmos uma instrucgdo de
divisao (que serd vista mais adiante!).

Uma coisa interessante com a multiplicacdo ¢€é que se
multiplicarmos dois registradores de 16 bits obteremos o resultado
necessariamente em 32 bits. 0 par de registradores DX e AX sao
usados para armazenar esse numero de 32 bits da seguinte forma: DX
serd a word mais significativa e AX a menos significativa.

Por exemplo, se multiplicarmos OFFFFh por OFFFFh obteremos:
OFFFEGOO1h (DX = OFFFEh e AX = 0001h).

Eis a regra para descobrir o tamanho do restultado de uma
operacdo de multiplicacéo:

A*B=M
A B M
8 bits 8 bits 16 bits
16 bits 16 bits 32 bits

A multiplicacdo sempre ocorrera entre o acumulador (AL ou AX) e
um outro operando. Eis a sintaxe das instrucdes:

MUL BL ; AX = AL * BL
IMUL CX ; DX:AX = AX * CX

A primeira instrucdo (MUL) n&o considera o sinal dos operandos.
Neste caso, como BL é de 8 bits, a multiplicacdo se daré entre BL e
AL e o resultado serd armazenado em AX.

A segunda instrucdo leva em consideracdo o sinal dos operandos
e, como CX é de 16 bits, a multiplicac&@o se dara entre CX e AX e o
restultado sera armazenado em DX e AX. Lembrando que o sinal de um
numero inteiro depende do seu bit mais significativo!

= Divisdo:

Precisamos tomar cuidado com a divisdo pelo seguinte motivo: Se
0 resultado ndo couber no registrador destino, um erro de "Division
by zero" ocorrera (isto ndo esta perfeitamente documentado nos

diversos manuais que 1li enquanto estudava assembly 80x86... Vim a
descobrir este 'macete' numa antiga edi¢cdo da revista PC MAGAZINE
americana). Outro cuidado é com o divisor... se for @ o mesmo erro
ocorreral

A divis@o pode ser feita entre um numero de 32 bits e um de 16
ou entre um de 16 e um de 8, veja a tabela:

A+ B =0Q e resto

A B Q e resto
32 bits 16 bits 16 bits
16 bits 8 bits 8 bits

Assim como na multiplicacdo o numero (dividendo) de 32 bits é
armazenado em DX e AX.

Depois da divis&@o o quociente é armazenado em AL e o resto em AH
(no caso de divisdo 16/8 bits) ou o quociente fica em AX e o0 resto
em DX (no caso de divisdo 32/8 bits).

Exemplo da sintaxe:

DIV CX ; AX
IDIV BL ;AL

DX:AX + CX, DX = resto
AX + BL, AH = resto

0 primeiro caso é uma divisdo sem sinal e o segundo com sinal.
Note os divisores (CX e BL no nosso exemplo).

Na divisado 16/8 bits o dividendo é armazenado em AX antes da
divisado... No caso de 32/8 bits DX e AX sdo usados...

Mais um detalhe: O0s flags, depois de wuma multiplicacéo ou
divisdo ndo devem ser considerados.

RBT Curso de Assembly Aula N° 07

Por: Frederico Pissarra

Algumas instrucbes afetam somente aos flags. Dentre elas, as
mais utilizadas sé@o as instrucdes de comparacdo entre dois dados.

= Comparacdes aritiméticas:

A instrucdo CMP ¢é wusada quando se quer comparar dois dados,
afetando somente aos flags. Eis a sintaxe:

CMP AL, 1Fh
CMP ES:[DI],1
CMP AX, [SI]

Esta instrucdo faz a subtracdo entre o operando mais a esquerda
e o mais a direita, afetando somente os flags. Por exemplo, se o0s
dois operandos tiverem valores 1iguais a subtracdo dara valores
iguais e o flag de ZERO sera 1. Eis a mecanica de CMP:

CMP AL, 1Fh ; AL - 1Fh, afetando somente os Flags

= Comparacdes logicas:

A instrucdo TEST é usada quando se quer comparar o estado de
determinados bits de um operando. Eis a sintaxe:

TEST AL, 10000000b
TEST [BX],00001000b

Esta instrucdo faz um AND com os dois operados, afetando apenas
os flags. Os flags Z, S e P séo afetados, os flags O e C seréo
zerados.

w Instrucdes que mudam o estado dos flags diretamente:
CLC - Abreviacdo de CLear Carry (Zera o flag Carry).

CLD - Abreviacdo de CLear Direction (Ajusta flag de direcdo em
zero, especificando o sentido correto para instrucdes de

bloco).
CLI - Abreviacéo de ClLear Interrupt (Mascara flag de
interrupcéo, ndo permitindo que a CPU reconheca as

interrupcbes mascaraveis).

CMC - Abreviacdo de CoMplement Carry (Inverte o flag de carry).

STC - Abreviacdo de SeT Carry (Faz carry = 1).

STD - Abreviacdo de SeT Direction (flag de direcdo setado -
indica que as instrucdes de bloco incrementardo os seus
pointers no sentido contrario - de cima para baixo).

STI - Abreviacdo de SeT Interrupt (Faz com que a CPU volte a
reconhecer as interrupc¢cbes mascaraveis).

Uma interrupcdo é um "desvio" feito pela CPU quando um
dispositivo requer a atencdo da mesma. Por exemplo, quando vocé
digita uma tecla, o circuito do teclado requisita a atencdo da CPU,
que por sua vez, para o que esta fazendo e executa uma rotina
correspondente & requisicdo feita pelo dispositivo (ou seja, a
rotina da interrupgdo). Ao final da rotina, a CPU retorna & tarefa
que estava desempenhando antes da interrupcdo. Nos PCs, TODAS as
interrupcdes sd8o mascaraveis (podem ser ativadas e desativadas
guando quisermos), com a Unica excessdo da interrupcao de checagem
do sistema (o famoso MEMORY PARITY ERROR é um exeplo!).

RBT Curso de Assembly Aula N° 08

Por: Frederico Pissarra
Veremos agora as instrug¢bes de controle de fluxo de programa.

A CPU sempre executa instrucdes em sequéncia, a ndo ser que
encontre instrucdes que "saltem" para outra posicdo na memdria.

Existem diversas formas de "saltar" para um determinado
endereco:

= Salto incondicional:

A instrucdo JMP simplesmente salta para onde se quer. Antes de
apresentar a sintaxe, um detalhe sobre codificacao: O operando da
instrucdo JMP é um endere¢o na memdéria, mas, cCOmo usaremos sempre um
compilador assembly, necessitamos criar um "rotulo" ou "label" para
onde o salto seréd efetuado... 0 compilador trata de calcular o

endereco pra gente.

Eis a sintaxe de JMP:

JMP Aqui2
Aquil:

JMP Aqui3
AquiZ2:

JMP Aquil
Aqui3:

O0s "labels" sdo sempre seguidos de dois-pontos. Note, no pedaco
de cdédigo acima, a quebra da sequéncia de execucdo.

= Salto incondicional:

Diferente de JMP, temos instrucdes que realizam um salto somente
se uma condigcdo for satisfeita. Para isso, wusa-se os flags. A
sintaxe dessas instruc¢fes depende da condicdo do flag que se quer
testar. Eis a listagem dessas instrucdes:

- JZ "label" - Salta se flag z=1

- JNZ "label" - Salta se flag Z=0

- JC "label" - Salta se flag C=1

- JNC "label" - Salta se flag C=0

- JO "label" - Salta se flag 0=1

- JNO "label" - Salta se flag 0=0

- JPO "label" - Salta se flag P=0 (paridade impar)
- JPE "label" - Salta se flag P=1 (paridade par)

- JS "label" - Salta se flag S=1

- JNS "label" - Salta se flag S=0

Existem ainda mais saltos condicionais para facilitar a vida do
programador :

- JE "label" Jump if Equal (mesmo que JZ)

- JNE "label" - Jump if Not Equal (mesmo que JNZ)

- JA "label" - Jump if Above (salta se acima)

- JB "label" - Jump if Below (salta se abaixo)

- JAE "label" - Jump if Above or Equal (salta se acima ou =)
- JBE "label" - Jump if Below of Equal (salta se abaixo ou =)
- JG "label" - Jump if Greater than (salta se >)

- JL "label"™ - Jump if Less than (salta se <)

- JGE "label" - Jump if Greater than or Equal (salta se >=)

- JLE "label" - Jump if Less or Equal (salta se <=)

A diferenca entre JG e JA, JL e JB é:

- JA e JB séo relativos a comparacdes sem sinal.
- JG e JL séo relativos a comparacBes com sinal.

0Os saltos condicionais tém wuma desvantagem com relacdo aos
saltos incondicionais: O deslocamento é relativo a posicgdo corrente,
isto é, embora no nosso cd6digo o salto se dé na posicdo do "label" o
assembler traduz esse salto para uma posicdo "x" bytes para frente
ou para tras em relacdo a posicdo da instrucdo de salto... e esse
nuimero "x" estd na faixa de -128 a 127 (traduzindo isso tudo pra
guem ndo entendeu: Nao é possivel saltos muito longos com instrucdes
de salto condicionais... salvo em casos especiais que explicarei
mais tarde!).

Existe ainda a instrucdo JCXZ. Essa instrucdo salta se o
registrador CX for 0.

Mais uma instrucdo: LOOP
A instrucdo LOOP salta para um determinado endereco se o

registrador CX for diferente de zero e, antes de saltar, decrementa
CX. Um exemplo do uso desta instrucdao:

SUB AL, AL ;AL = 0
SuB DI, DI ;DI = 0
MOV CX, 1000 ;CX = 1000

Loopl:
MOV BYTE PTR ES:[DI],0@ ;Poe O em ES:DI
INC DI ;Incrementa o offset (DI)
LOOP Loop1l ;Repete ate' que CX seja 0

Essa rotina preenche os 1000 bytes a partir de ES:0 com 0. 0O
modificador "BYTE PTR" na frente de ES:[DI] resolve uma ambiguidade:
Como podemos saber se a instrucdo "MOV ES:[DI],0" escreverda um byte
ou um word? Por default, o compilador assume word, por 1isso temos
que usar o modificador indicando que queremos byte.

Repare que o pedaco entre "Loopl" e o final da rotina equivale a
uma instrucdo "REP STOSB".

Podemos também especificar uma instrugdo LOOP condicional, basta
acrescentar 'Z' ou 'NZ' (ou os equivalentes 'E' ou 'NE') no fim.
Isto quer dizer: Salte ENQUANTO CX for ZERO (Z) ou N-O for ZERO
(NZ). A instrucdo LOOP sem condig¢do é a mesma coisa que LOOPNZ ou
LOOPNE!

= Chamadas a sub-rotinas:

A instrucdo CALL funciona como se fosse a instrucdo GOSUB do
velho BASIC. Ela salta para a posigcdo especificada e quando a
instrugdo RET for encontrada na sub-rotina a CPU salta de volta para
a proxima instrucd@o que segue o CALL. A sintaxe:

CALL "label"

Eis um exemplo:

MOV AL, 9 ;Poe numero em AL
CALL ShowNumber ;Salta para a subrotina

ShowNumber :

RET ;Retorna

RBT Curso de Assembly Aula N° 09

Por: Frederico Pissarra

0 assunto de hoje €é INTERRUPGOES. Como ja disse antes, uma
interrupcdo é uma requisicdo da atencdo da CPU por um dispositivo
(por exemplo o teclado, quando apertamos uma tecla!). A CPU
INTERROMPE o processamento normal e salta para a rotina que "serve"
a interrupcédo requisitada, retornando ao ponto em que estava ANTES
da interrupcdo quando finalizar a vrotina de interrupcdo. Assim
funciona a nivel de hardware.

A novidade nos processadores INTEL da série 80x86 é que existem
instrucdes assembly que EMULAM a requisicdo de wuma interrucéo.
Essas instrucbes nada mais sdo que um "CALL", mas ao invés de
usarmos um enderego para uma subrotina, informamos o indice (ou o
cédigo) da interrupcdo requisitada e a CPU se comportard como se um
dispositivo tivesse requisitado a interrupcdo...

As rotinas do DOS e da BIOS sdo chamadas por essas instrucdes.
Na realidade, este artificio da familia INTEL facilita muito o
trabalho dos programadores porque nao precisamos saber onde se
encontram as rotinas da BIOS e do DOS na meméria... Precisamos
saber apenas o indice da interrupcdo de cada uma das rotinas... o
endereco a CPU calcula para nos!

Eis a sintaxe da instrucdo:

INT 21h
INT 10h

Onde 21h e 160h sdo indices.

A CPU sabe para onde saltar porque no inicio da memdria de todo
PC tem uma tabela conhecida como "Tabela dos vetores de
interrupcdo". A CPU, de posse do indice na instrucdo INT, '"pega" o
endereco correspondente a esse indice nessa tabela e efetua um CALL
diferente (porque o fim de wuma rotina de interrupgdo tem que
terminar em IRET e ndo em RET - IRET é o RET da rotina de
interrupcdo - Interrupt RETurn).

Por exemplo... Se precisamos abrir um arquivo, o trabalho é
enviado ao DOS pela interrupcao de indice 21h. Se queremos ler um
setor do disco, usamos a interrupc¢ao de indice 13h, etc... Mas, nao

use a instrucao INT sem saber exatamente o que estd fazendo, ok?
Pode ter resultados desastrosos!

Uma descricdo da maioria das interrupcdes de software
disponiveis nos PCs compativeis estéd disponivel no livro "Guia do
programador para PC e PS/2" de Peter Norton (recomendo a aquisicgéo
deste livro! De preferencia a versao americana!). Ou, se preferir
"literatura eletronica" recomendo o arquivo HELPPC21.ZIP (v2.1),
disponivel em qualquer bom BBS... Ainda assim pedirei para o RC do
ES (RBT) para disponibiliza-lo para FREQ aos Sysops interessados em
adquiri-1lo.

Quanto as interrucdes de hardware

assunto meio complexo no momento e requer um bom conhecimento de
eletronica digital e do funcionamento do micrprocessador... no
futuro (préximo, espero!) abordarei esse assunto.

(as famosas 1IRQs!)... é

RBT Curso de Assembly Aula N° 10

Por: Frederico Pissarra

Mais instrucdes 1légicas... Falta-nos ver as intrugbes de
deslocamento de bits: SHL, SHR, SAL, SAR, ROL, ROR, RCL e RCR.

A Ultima letra nas 1instrucdes acima especifica o sentido de
rotacdo (R = Right - direita, L = Left - esquerda).

Para exemplificar a mecénica do funcionamento dessas instrucdes
recorrerei a graficos (fica mais facil assim).

SHL e SHR
SHL:
Carry|—— 0]
msb 1sb
SHR:
0o — ——|Carry
msb 1sb

SHR e SHL fazem o deslocamento dos bits em dire¢do ao flag Carry
e acrescentam © no lugar do 0ltimo bit que foi deslocado. Essa
operacdo tem o mesmo efeito de multiplicar por 2 (SHL) ou dividir
por 2 (SHR) um valor. Com a vantagem de nado gastar tanto tempo
quanto as instrucdes DIV e MUL.

SHR é a abreviacdo de SHift Right, enquando SHL é a de SHift
Left.

SAL e SAR

SAL funciona da mesma maneira que SHL.

SAR: —

— ——|Carry

msb 1sb

SAR desloca todos os bits para a direita (o 1lsb vai para o flag
carry) e repete o conteldo do antigo ultimo bit (que foi deslocado).

SAR é a abreviagdo de SHift Arithmetic Right. Sendo um

deslocamento aritimético, n&do poderia de desconsiderar o sinal do
dado deslocado (dai o motivo de repetir o bit mais significativo!).

RCL e RCR

RCL:

——- |Carry |—— —
msb 1sb
RCR:
- ——|Carry
msb 1sb

RCR e RCL rotacionam o dado '"passando pelo carry". Isto

significa que o bit menos significativo (no caso de ROR) seréa
colocado no flag de carry e que o conteudo antigo deste flag sera
colocado no bit mais significativo do dado.

ROL e ROR

ROL:

Carry|—— —
mshb 1sb
ROR:
——|Carry
msb 1sb

Aqui a rotacao e' feita da maneira correta... o flag de carry

apenas indica o ultimo bit que "saiu" e foi para o outro lado...

A sintaxe dessas instrucdes é a seguinte:

SHL AX,1
SHR BL, 1
RCL DX, CL
ROL ES:[DI],CL

Note que o segundo operando é um contador do numero de rotacdes
ou shifts serdo efetuadas. Nos microprocessadores 80286 em diante
pode-se usar um valor diferente de 1, no 8088/8086 nao pode!

Repare também que podemos usar APENAS o registrador CL como
operando da direita se quisermos usar algum registrador!

RBT Curso de Assembly Aula N° 11

Por: Frederico Pissarra
Mais instrucgdes de comparacéao...
= CMPSB e CMPSW

Essas instrucdes comparam (da mesma forma que CMP) o conteudo da
meméria apontada por DS:SI com o conteudo apontado por ES:DI,
afetando os flags. Com isso, soluciona-se a limitacdo da instrucéo
CMP com relacdo aos dois operandos como referéncias a memodria!

Lembre-se que DS:SI é o operando implicito FONTE, enquanto ES:DI
é o0 destino. A comparacdo é feita de ES:DI para DS:SI. A rotina
abaixo é equivalente a CMPSB:

MOV AL,ES:[DI]
CMP AL, [SI]
INC SI

INC DI

Existe um pequenino erro de ldgica na rotina acima, mas serve
aos nossos propositos de ilustrar o que ocorre em CMPSB.

SI e DI serdo incrementados (ou decrementados, depende do flag
de direcdo) depois da operagcdo, e o incremento (ou decremento)
dependera da instrucdo... Lembre-se que CMPSB compara Bytes e CMPSW
compara Words.

= SCASB e SCASW

Essas instrucbes servem para comparar (da mesma forma que CMP o
faz) o conteudo da meméria apontado por DS:SI com o registrador AL
(no caso de SCASB) ou AX (no caso de SCASW). O0s flags sdo afetados
e SI é incrementado (ou decrementado) de acordo com a instrucéo
usada.

Comparando blocos de meméria:

Podemos usar CMPS? e SCAS? (onde ? e' B ou W) em conjunto com
REP para compararmos blocos (CMPS?) ou procurar por um determinado
dado num bloco (SCAS?). A diferenca aqui é que podemos fornecer uma
condicdo de comparacdo ou busca.

Acrescentando o modigicador REP, precisamos dizer a uma dessas
instrucdes a quantidades de dados que queremos manipular... fazemos
isso através do registrador CX (assim como fizemos com LODS? e
ST0S?):

;Certifica-se do sentido crescente!
CLD

;Obtém o segmento da linha de comando e coloca em DS
MOV AX,SEG LINHA_DE_COMANDO
MOV DS, AX

;0btém o offset inicial da linha de comando
MOV SI,OFFSET LINHA_DE_COMANDO

;Procura, no maximo por 128 bytes
MOV CX, 128

;Procuraremos por um espaco.
MOV AL, "' '

REPNE SCASB

Esse fragmento de coddigo ilustra o uso de SCASB com blocos. O
modificador REPNE significa (REPete while Not Equal - Repete
enquanto ndo for igual). REPNE garante que o byte vai ser procurado
por toda a linha de comando até que o primeiro espaco seja
encontrado. Se ndo houver espacos na linha, ent&do, depois de 128
bytes de procura, o registrador CX estard zerado (ja& que ¢é
decrementado a cada byte comparado).

Esta é outra caracteristica das instrucdes que manipulam blocos
(as que sao precedidas de REP, REPNE ou REPE): O contador é
decrementado a cada operagdo da instrucgdo associada (no nosso caso
SCASB), bem como os demais operandos implicitos (SI no caso acima) é
incrementado a cada passo.

Se quisermos encontrar o primeiro byte DIFERENTE de espac¢o na
rotina acima, basta trocar REPNE por REPE (Repete enquanto for
IGUAL).

REPE e REPNE ndo foram mencionados antes porque ndo funcionam
com LODS? e STOS?.

RBT Curso de Assembly Aula N° 12

Por: Frederico Pissarra

A partir de agora veremos, resumidamente, como desenvolver
funcdes/procedures em assembly no mesmo coédigo PASCAL.

0O TURBO PASCAL (a partir da versao 6.0) fornece algumas
palavras-chave dedicadas a construcdo de rotinas assembly in-line
(esse recurso é chamado de BASM nos manuais do TURBO PASCAL - BASM é
a abreviacdo de Borland ASseMbler).

Antes de comegarmos a ver o0 nosso primeiro cdédigo em assembly
vale a pena ressaltar alguns cuidados em relacdo a codificacdo de
rotinas assembly em TURBO PASCAL... As nossas rotinas devem:

= Preservar sempre o conteudo dos registradores DS, BP e SP.
= Nunca modificar, diretamente, o conteudo dos registradores CS,
IP e SS.

0 motivo dessas restricdes é que os registradores BP, SP e SS
sdo wusados na obtencdo dos valores passados como parametros a
funcé@o/procedure e na localizacdo das variaveis globais na meméria.
0 registrador DS é usado por todo o cédigo PASCAL e aponta sempre
para o segmento de dados corrente (o qual ndo sabemos onde se
encontra... deixe que o cdédigo PASCAL tome conta disso!).

Com relacdo ao conteldo de CS e 1IP, ndo é uma boa préatica (nem
mesmo em codigos assembly puros) alterar o seus valores. Deixe que
as instrucbes de salto e chamada de subrotinas facam isso por
vocé!).

0Os demais registradores podem ser alterados a vontade.
A funcdo HexByte() abaixo ¢é um exemplo de fung¢do totalmente

escrita em assembly... Ela toma um valor de 8 bits e devolve uma
string de 2 bytes contendo o valor hexadecimal desse parametro:

FUNCTION HexByte(Data : Byte) : String; ASSEMBLER;
ASM
LES DI, @Result { Aponta para o inicio da string. }
MoV AL, 2 { Ajusta tamanho da string em 2. }
STOSB
MoV AL,Data { Pega o dado a ser convertido. }
MoV BL, AL { Salva-o em BL. }
SHR AL, 1 { Para manter compatibilidade com }
SHR AL,1 { os microprocessadores 8088/8086 }
SHR AL,1 { nao é prudente usar SHR AL, 4. }
SHR AL, 1
ADD AL, '0Q' { Soma com ASCII '0'. }
CMP AL,'9' { Maior que ASCII '9'? }
JBE @NoAdd_1 { Nao é, entdo nao soma 7. }
ADD AL, 7 { E, entdo soma 7. 3}
@NoAdd_1:
MoV AH, AL { Salva AL em AH. }
MoV AL, BL { Pega o valor antigo de AL em BL.}
AND AL,1111B { Zera os 4 bits superiores de AL.}
ADD AL, '0Q' { Soma com ASCII '0'. }
CMP AL, '9' { Maior que ASCII '9'? }
JBE @NoAdd_2 { Nao é, entdo nao soma 7. }
ADD AL,7 { E, entdo soma 7. }
@NoAdd_2:
XCHG AH, AL { Trocar AH com AL para gravar na }
STOSW { ordem correta. 3}
END;

A primeira linha é a declaracdo da funcdo seguida da diretiva
ASSEMBLER (informando que a funcdo TODA foi escrita em assembly!).
A seguir a palavra-chave ASM indica o inicio do bloco assembly até
gue END; marque o fim da funcéo. ..

A primeira linha do co6digo assembly é:

LES DI, @Result

Quando retornamos uma string numa funcdo precisamos conhecer o
endereco do inicio dessa string. A variavel @Result contém um
pointer que aponta para o inicio da string que sera devolvida numa
funcdo. Esse endereco é sempre um endereco FAR (ou seja, no formato
SEGMENTO:OFFSET) .

A seguir inicializamos o tamanho da string em 2 caracteres:

MOV AL, 2
STOSB

Note que STOSB vai gravar o conteldo de AL no endereco apontado
por ES:DI, ou seja, o endereco apontado por @Result, e logo apés DI
€ incrementado, apontando para a primeira posicdo valida da string.

0 método que wusei para gerar uma string hexadecimal é o
seguinte:

- Pegamos o parametro 'Data' e colocamos em AL.

- Salva-se o conteldo de AL em BL para que possamos obter os 4
bits menos significativos sem termos que ler 'Data' novamente!

- Com AL fazemos:

- Desloca-se AL 4 posicoes para a direita, colocando os 4
bits mais significativos nos 4 menos significativos e
preenchendo os 4 mais significativos com 0B.

(a)- Soma-se o valor do ASCII '0' a AL.
(b)- Verifica-se se o resultado é maior que o ASCII '9'.
- Se for, somamos 7.
- Salvamos o conteudo de AL em AH.
- Recuperamos o valor antigo de AL que estava em BL.
- Com AL fazemos:

- Zeramos o0s 4 bits mais significativos para obtermos apenas
0s 4 menos significativos em AL.

- Repetimos (a) e (b)

- Trocamos AL com AH e gravamos AX com STOSB

A primeira pergunta é: Porque somar 7 quando o resultado da soma
com o ASCII '@' for maior que o ASCII '9'? A resposta pode ser
vista no pedaco da tabela ASCII abaixo:

0123456789 :;<=>?@ABCDEFTF
L A

E esses 7 caracteres ?

Observe que depois do ASCII '9' segue o ASCII ':' ao invés do
ASCII 'A', como é desejado... Entao, se o resultado da soma dos 4
bits menos signficativos (que varia de 0000B até 1111B - ou de 0 a
15) com o ASCII '@' for maior que o ASCII '9' precisamos compensar a
existencia dos 7 caracteres indesejaveis!

Imagine que AL seja 0. Somando o ASCII 'O@' (que equivale ao
numero 30h) a AL obteriamos:

AL = 0010B = 2h

AL = 2h + '0O'

AL = 2h + 36h

AL = 32h = '2'

Imagine agora que AL seja 1011B. Fazendo as mesmas contas
obteriamos AL = 3Bh (que é a mesma coisa que o ASCII ';'. No

entando, 3Bh é maior que o ASCII '9' (ou seja, 3%h)... Entéo:

AL = ';' = 3Bh
AL = 3Bh + 7h
AL = 42h = 'B'

A outra coisa que vocé poderia me perguntar é o porque eu usei a
instrugcdo XCHG AH,AL no final do cdodigo. A resposta é simples...
Os microprocessadores da INTEL gravam words na meméria da seguinte
maneira:

Word = FAFBh
Na memdria: FBh FAh

Ndo importa se o seu computador seja um Pentium ou um XT... A
memoria é sempre dividida em BYTES. A CPU apenas "le" um conjunto
maior de bytes de acordo com a quantidade de bits da sua CPU. Por
exemplo, os microprocessadores 8086 e 80286 sdo CPUs de 16 bits e
por isso conseguem ler 2 bytes (8 bits + 8 bits = 16 bits) de uma sé
vez... As CPUs 386 e 486 sado de 32 bits e podem ler de uma s6 vez 4
bytes!

Esse conjunto de bytes que a CPU pode enxergar é sempre
armazenado da forma contraria do que os o0lhos humanos leem... O
byte menos significativo SEMPRE vem ANTES do mais significativo. No
caso de um DOUBLEWORD (ou numero de 32 bits de tamanho) o formato &
0 mesmo... Exemplo:

NUumero = FAFBFCFDFEh
Na meméria: FE FD FB FA

Analizando a rotina HexByte() a gente ve que AH tem o byte mais
significativo e AL 0 menos significativo. Como o0 menos
significativo vem sempre antes do mais significativo fiz a troca de
AH com AL para que o numero HEXA seja armazenado de forma correta na
meméria (string). Um exemplo: Suponha que o vocé passe o valor 236
a funcdo HexByte():

Valor = 236 ou ECh
Até antes de XCHG AH,AL: AH
AL

ASCII 'E'
ASCII 'C'

Se nao tivessemos a instrucdo XCHG AH,AL e simplesmente
usassemos o STOSW (como esta no cdédigo!) AH seria precedido de AL na
meméria (ou na string!), ficariamos com uma string 'CE'! N&o me
lembro se ja falei que o L de AL significa LOW (ou menos
significativo!) e H de AH significa HIGH (ou mais significativo),
portanto AL e AH s8o, respectivamente, os bytes menos e mais
significativos de AX!

Nao se importe em coloca um RET ao fim da func¢&o, o TURBO PASCAL
coloca isso sozinho...

Vocé deve estar se perguntando porque ndo fiz a rotina de forma

tal que a troca de AH por AL ndo fosse necessaria... Well... Fiz
isso pra ilustrar a forma como os dados sdo gravados na memdria!
Retire XCHG AH,AL do cédigo e veja o que acontece! Um outro bom

exercicio é tentar otimizar a rotina para que a troca ndo seja
necessaria...

E... para fechar a rotina, podemos aproveitar HexByte() para
construir HexWord():

Function HexWord(Data : Word) : String;
Var H, L : String;

Begin
H := HexByte(HIGH(Data));
L := HexByte(LOW(Data));

HexWord := H + L;
End;

HexDoubleWord() eu deixo por sua conta.

Aguardo as suas duvidas...

RBT Curso de Assembly Aula N° 13

Por: Frederico Pissarra

Algumas pessoas, depois de verem o codigo-exemplo do texto
anterior, desenvolvido para ser compilado em TURBO PASCAL, me
perguntaram: "E quanto ao C?!". Well... aqui vao algumas técnicas
para codificac¢do mixta em C...

Antes de comecarmos a dar uma olhada nas técnicas, quero avisar
que meu compilador preferido é o BORLAND C++ 3.1. Ele tem algumas
caracteristicas que ndo estdo presentes do MicroSoft C++ 7.0 ou no
MS Visual C++! Por exemplo, O MSC++ ou o0 MS-Visual C++ ndo tem
"pseudo"-registradores (que ajudam um bocado na mixagem de cdédigo,

evitando os "avisos" do compilador).

Mesmo com algumas diferencas, vocé podera usar as técnicas aqui
descritas... As regras podem ser usadas para qualquer compilador
que ndo gere aplicacdes em modo protegido para o MS-DOS.

= Regras para a boa codigificacao assembly em C
Assim como no TURBO PASCAL, devemos:

* Nunca alterar CS, DS, SS, SP, BP e IP.
* Podemos alterar com muito cuidado ES, SI e DI
* Podemos alterar sempre que quisermos AX, BX, CX, DX

0 registrador DS sempre aponta para o segmento de dados do
programa... Se a sua funcdo assembly acessa alguma varidvel global,
e vocé tiver alterado DS, a variavel que vocé pretendia acessar
ndo estarda disponivel! O0s registradores SS, SP e BP s&do usados pela
linguagem para empilhar e desempilhar os parametros e variaveis
locais da funcdo na pilha... altera-los pode causar problemas! O
par de registradores CS:IP nao deve ser alterado porque indica a
préxima posicdo da memdéria que contém uma instrucdo assembly que
sera executada... Em qualquer programa "normal" esses ultimos dois
registradores sdo deixados em paz.

No caso dos registradores ES, SI e DI, o compilador os wusa na
manipulacdo de pointers e quando precisa manter uma variavel num
registrador (quando se usa a palavra-reservada '"register" na
declaracdo de uma variavel, por exemplo!). Dentro de wuma funcao
escrita puramente em assembly, SI e DI podem ser alterados a vontade
porque o compilador trata de salva-las na pilha (via PUSH SI e PUSH
DI) e, ao término da funcdo, as restaura (via POP DI e POP SI). A
melhor forma de se saber se podemos ou ndo wusar um desses
registradores em um cédigo mixto é compilando o programa e gerando
uma listagem assembly (no BORLAND C++ isso é feito usando-se a chave
-S na 1linha de comando!)... faca a andlize da funcédo e veja se o
uso desses registradores vai prejudicar alguma outra parte do
cédigo!

Se vocé ndo quer ter essa dor de cabeca, simplesmente salve-o0s
antes de usar e restaure-os depois que 0s usou!

= Modelamento de memdria:

0 mais chato dos compiladores C/C++ para o MS-DOS é o
modelamento de meméria, coisa que ndo existe no TURBO PASCAL! Digo
"chato" porque esse recurso, QUE E MUITO UTIL, nos da algumas dores
de cabeca de vez em quando...

0s modelos COMPACT, LARGE e HUGE usam, por default, pointers do
tipo FAR (segmento:offset). O0s modelos TINY, SMALL e MEDIUM usam,
por default, pointers do tipo NEAR (apenas offset, o segmento de
dados é assumido!).

A "chatisse" estd em criarmos co6digos que compilem bem em
qualquer modelo de meméria. Felizmente isso é possivel gracas ao
pre-processador:

#if defined(__TYNY__) || defined(__SMALL__) || defined(__MEDIUM__)
/* Processamento de pointers NEAR */

#else

/* Processamento dos mesmos pointers... mas, FAR! */

#endif

Concorda comigo que é meio chato ficar enchendo a listagem de
diretivas do pré-processador?... C'est la vie!

= C + ASM

Os compiladores da BORLAND possuem a palavra reservada "asm".
Ela diz ao compilador que o que a segue deve ser interpretado como
uma instrucdo assembly. Os compiladores da MicroSoft possuem o
"_asm" ou o "__asm". A BORLAND ainda tem uma diretiva para o
pré-processador que é usada para indicar ao compilador que o cddigo
deve ser montado pelo TURBO ASSEMBLER ao invés do compilador C/C++:

#pragma inline

Vocé pode usar isto ou entdo a chave -B da linha de comando do
BCC... funciona da mesma forma! Vocé deve estar se perguntando
porque wusar o0 TURBO ASSEMBLER se o proéprio compilador C/C++ pode
compilar o cddigo... Ahhhhh, por motivos de COMPATIBILIDADE! Se
vocé pretende que o seu codigo seja compilédvel no TURBO C 2.0, por
exemplo, deve incluir a diretiva acima!! Além do mais, o TASM faz
uma checagem mais detalhada do cédigo assembly do que o BCC...

Eis um exemplo de uma funcdozinha escrita em assembly:

int f(int X)

asm mov ax, X /* AX = parametro X */
asm add ax, ax /* AX = 2 * AX */
return _AX; /* retorna AX */

Agui segue mais uma regra:

= Se a sua funcdo pretende devolver um valor do tipo "char" ou
"unsigned char", coloque o valor no registrador AL e (nos
compiladores da BORLAND) use "return _AL;"

= Se a sua funcdo pretende devolver um valor do tipo "int" ou
"unsigned int", coloque o valor no registrador AX e (também
nos compiladores da BORLAND) use "return _AX;"

A ultima linha da funcdo acima ("return _AX;") ndo é necessaria,
mas se ndo a colocarmos teremos um aviso do compilador, indicando
que "a funcdo precisa retornar um ‘'int'". Se vocé omitir a udltima
linha (é o caso dos compiladores da MicroSoft que ndo tem
pseudo-registradores) e ndo ligar pros avisos, a coisa funciona do
mesmo jeito.

Agora vocé deve estar querendo saber como devolver os tipos
"long", "double", "float", etc... 0 tipo "long" (bem como "unsigned
long") é simples:

= Se a sua funcdo pretende devolver um valor do tipo "long" ou
"unsigned long", coloque os 16 bits mais significativos em DX
e 0s 16 menos significativos em AX.

Ndo existe uma forma de devolvermos DX e AX ao mesmo tempo
usando os pseudo-registradores da Borland, entdo prepare-se para um
"aviso" do compilador...

Os demais tipos n8o s8o inteiros... sdo de ponto-flutuante,
portanto, deixe que o compilador tome conta deles.

= Trabalhando com pointers e vetores:

Dé uma olhada na listagem abaixo:

unsigned ArraySize(char *str)

{
#if defined(__TYNY_) || defined(__SMALL_) || defined(__MEDIUM_)

asm mov si,str /* STR = OFFSET apenas */
#else

asm push ds

asm lds si,str /* STR = SEGMENTO:OFFSET */
#endif

asm mov cx, -1
ContinuaProcurando:

asm inc CcX

asm lodsb

asm or al,al

asm jnz ContinuaProcurando

asm mov ax, cx

#if defined(__COMPACT__) || defined(__LARGE__) || defined(__HUGE_)
asm pop ds /* Restaura DS */
#endif

return _AX,

A rotina acima é equivalente a funcdo strlen() de <string.h>.

Como disse antes, nos modelos COMPACT, LARGE e HUGE um pointer
tem o formato SEGMENTO:0FFSET que ¢é armazenado na meméria em uma
grande variavel de 32 bits (os 16 mais significativos s&o o SEGMENTO
e 0s 16 menos significativos sd@o o OFFSET). Nos modelos TINY, SMALL
e MEDIUM apenas o OFFSET é fornecido no pointer (ele tem 16 bits

neste caso), o SEGMENTO é o assumido em DS (ndo devemos altera-1lo,
neste caso!).

Se vocé compilar essa listagem nos modelos COMPACT, LARGE ou
HUGE o codigo coloca em DS:SI o pointer (lembre-se: pointer é s6 um
outro nome para "endereco de meméria!"). Sendo, precisamos apenas
colocar em SI o OFFSET (DS ja& esta certo!).

Ao sair da fung8o, DS deve ser o mesmo de antes da funcdo ser
chamada... Portanto, nos modelos "LARGOS" (hehe) precisamos salvar
DS ANTES de uséa-1lo e restaura-lo DEPOIS de usado! O compilador néo
faz isso automaticamente!

Ndo se preocupe com SI (neste caso!)... este sim, o compilador
salva sozinho...

Um macete com o uso de vetores pode ser mostrado no seguinte
codigo exemplo:

char a[3];
int b[3], c[3];

long d[3];
void init(void)
¢ int 1i;
for (i = 0; i < 3; i++)
, a[i] = b[i] = c[i] = d[i] = 0,

0 compilador gera a seguinte funcdo equivalente em assembly:

void init(void)

{
asm xor si,si /* SI =1 */
asm jmp short @1@98
@1@50:
asm mov bx, si /* BX =1 */
asm shl bx,1
asm shl bx, 1 /* BX = BX * 4 */
asm xor ax, ax
asm mov word ptr [d+bx+2],0 /* 21 */
asm mov word ptr [d+bx],ax
asm mov bx, si
asm shl bx, 1
asm mov [c+bx], ax
asm mov bx, si /* 2?20 */
asm shl bx, 1 /* 20 %/
asm mov [b+bx], ax
asm mov [a+si], al
asm inc si
@1@98:
asm cmp si,3
asm jl short @1@50
}

Quando poderiamos ter:

void init(void)
{
asm xor si,si /* SI =1=0 */
asm jmp short @1@98
@1@50:
asm mov bx, si /* BX =1 */
asm shl bx, 1
asm shl bx,1 /* BX = BX * 4 */
asm xor ax, ax /¥ AX =0 */
asm mov word ptr [d+bx+2],ax /* modificado! */
asm mov word ptr [d+bx],ax
asm shr bx, 1 /* BX =BX / 2 */
asm mov [c+bx], ax
asm mov [b+bx], ax
asm mov [a+si], al
asm inc si
@1@98:
asm cmp si,3
asm jl short @1@50
}

Note que economizamos 3 instrucbes em assembly e ainda
aceleramos um tiquinho, retirando o movimento de um valor imediato
para memoria (o 0 de "mov word ptr [d+bx+2],0"), colocando em seu
lugar o registrador AX, que foli zerado previamente.

Isso parece besteira neste cddigo, e eu concordo... mas, e se
tivessemos:

void init(void)

for (1 = 0; 1 < 32000; i++)

a[i] = b[i] = c[i] = d[1i] =

e[i] = f[i] = g[i] = h[i] =

Ifi] = j[i] = k[i] = 1[1] =

m[i] = n[i] = o[i] = p[i] =

r{i] = s[i] = t[i] = u[i] =

v[i] = x[1] = y[i] = z[1i] =

/* ... mais um monte de membros de vetores... */
= _XYZ[i] = ©;

A perda de eficiéncia e o ganho de tamanho do cédigo seriam
enormes por causa da quantidade de vezes que o loop ¢é exeutado
(32000) e por causa do numero de movimentos de valores imediatos
para memo6ria, "SHL"s e "MOV BX,SI" que teriamos! Conclusdo: Em
alguns casos é mais conveniente manipular VARIOS vetores com funcgdes
escritas em assembly...

EXEMPLO de codificac&o: ** O swap() aditivado :)

Alguns cdédigos em C que precisam trocar o conteudo de uma
variavel pelo de outra usam o seguinte macro:

#define swap(a,b) { int t; t = a; a =b; b =1t; }

Bem... a macro acima funciona perfeitamente bem, mas vamos dar
uma olhada no c6édigo assembly gerado pelo compilador pro seguinte
programinha usando o macro swap():

#define swap(a,b) { int t; t = a; a=b; b =1¢t; }
int x =1, y = 2;

void main(void)
{ swap(x,y); }

0 cédigo equivalente, apés ser pre-processado, ficaria:

int x =2, y =1;
void main(void) {
int t;

asm mov ax, X
asm mov t,ax
asm mov ax,y
asm mov x,ax
asm mov ax,t
asm mov y,ax

No méximo, o compilador usa o registrador SI ou DI como variavel
't'... Poderiamos fazer:

int x =2, y=1;
void main(void)
{
asm mov ax, X
asm mov bx,y
asm xchg ax, bx
asm mov X, ax
asm mov y, ax
}

Repare que eliminamos wuma instrucdo em assembly, eliminando
também um acesso a memoOria e uma variavel local... Ta bom... pode
me chamar de chato, mas eu ADORO diminuir o tamanho e aumentar a
velocidade de meus programas usando esse tipo de artificio! :)

RBT Curso de Assembly Aula N° 14

Por: Frederico Pissarra

Agui estou eu novamente!!! Nos textos de "SoundBlaster
Programming" a gente vai precisar entender um pouquinho sobre o
TURBO ASSEMBLER, entdo é disso que vou tratar aqui, ok?

well... 0] TURBO ASSEMBLER 'compila' arquivos .ASM,
transformando-os em .0BJ (sorry "C"zeiros, mas os "PASCAL"zeiros
talvez ndo estejam familiarizados com isso!). Os arquivos .0BJ
devem ser linkados com os demais médulos para formar o arquivo .EXE
final. Precisamos entdo conhecer como criar um .0BJ que possa ser
linkado com cédigos em "C" e "PASCAL". Eis um exemplo de um mdédulo
em ASSEMBLY compativel com as duas linguagens:

IDEAL ; Poe TASM no modo IDEAL

MODEL LARGE,PASCAL ; Modelo de meméria...

LOCALS

JUMPS

GLOBAL ZeraAX : PROC ; ZeraAX é publico aos outros médulos

CODESEG ; Inicio do (segmento de) cddigo

PROC ZeraAX ; Inicio de um PROCedimento.
sub ax, ax
ret

ENDP ; Fim do PROCedimento.

END ; Fim do médulo .ASM

As duas linhas iniciais informam ao TURBO ASSEMBLER o modo de
operacdo (IDEAL), o modelamento de memé6ria (LARGE - veja discusséo
abaixo!) e o método de passagem de parametros para uma funcéo
(PASCAL) .

0 modo IDEAL é um dos estilos de programagdo que o TURBO
ASSEMBLER suporta (o outro é o modo MASM), e é o meu preferido por
um certo numero de razdes. O modelo LARGE e a parametrizacdo PASCAL
também sdo minhas preferidas porque no modelo LARGE ¢é possivel
termos mais de wum segmento de dados e de cédigo (podemos criar
programas realmente GRANDES e com MUITA informacdo a ser
manipulada!). PASCAL deixa o co6digo mais limpo com relacdo ao
conteldo dos registradores ap6és o retorno de uma fungdo (alguns
compiladores C, em algumas circunstancias, tém a mania de modificar
0 conteudo de CX no retorno!). Fora isso PASCAL também limpa a
pilha ANTES do retorno da procedure/funcdo. Mas, isso tudo tem uma
pequena desvantagem: Usando-se PASCAL, ndo podemos passar um numero
variavel de parametros pela pilha (os trés pontos da declaracdo de
uma funcdo C: void f(char *, ...);)!

Ahhh. .. Vocé deve estar se perguntando o que é o LOCALS e
JUMPS. LOCALS diz ao compilador que qualquer label comecado por @@
€ local ao PROC atual (n8o ¢é visivel em outros PROCs!)... Assim

podemos usar labels com mesmo nome dentro de varias PROCs, sem
causar nenhuma confuséo:

; modelamento, modo, etc...
LOCALS
PROC F1
mov cXx, 1000
@@Loop1l:
dec cx
jnz @@Loopl
ret
ENDP
PROC F2
mov cXx, 3000
@@Loopl:
dec cx
jnz @@Loop1l
ret
ENDP
;... 0 resto...

Repare que F1 e F2 usam o mesmo label (@@Loopl), mas o fato da
diretiva LOCALS estar presente informa ao assembler que elas séo
diferentes!

Ja JUMPS resolve alguns problemas para nés: O0s saltos
condicionais (JZ, JINZ, JC, JS, etc..) sdo relativos a posicdo atual
(tipo: salte para frente tantas posicdes a partir de onde estéal)...
Em alguns casos 1isso pode causar alguns erros de compilacdo pelo

fato do salto ndo poder ser efetuado na faixa que queremos... ai
entra o JUMPS... Ele resolve isso alterando o cédigo para que um
salto incondicional seja efetuado. Em exmplo: Suponha que o label

@@Loop2 esteja muito longe do ponto atual e o salto abaixo ndo possa
ser efetuado:

INZ @@Loop2

0 assembler substitui, caso JUMPS esteja presente, por:

JZ @arP1
JMP @@Loop2 ; Salto absoluto se NZ!

@@P1:

A linha seguinte do exemplo inicial informa ao assembler que o
PROCedimento ZeraAX é publico, ou GLOBAL (visivel por qualquer um
dos médulos que o queira!). Logo apds, a diretiva CODESEG informa o
inicio de um segmento de cdédigo.

Entre as diretivas PROC e ENDP vem o corpo de uma rotina em
assembly. PROC precisa apenas do nome da funcdo (ou PROCedimento).
Mais detalhes sobre PROC abaixo.

Finalizamos a listagem com END, marcando o fim do médulo em
.ASM.

Simples, né?! Suponha agora que vocé queira passar um parametro
para um PROC. Por exemplo:

; Equivalente a:

; void pascal SetAX(unsigned v) { _AX = v; }

; PROCEDURE SetAX(V:WORD) BEGIN regAX := V; END;
IDEAL

MODEL LARGE, PASCAL

LOCALS

JUMPS

GLOBAL SetAX : PROC

PROC SetAX

ARG V ! WORD
mov ax, [V]
ret
ENDP
END
Hummmm. . . Surgiu uma diretiva nova. ARG especifica a lista de

parametros que deverd estar na pilha apés a chamada de SetAX
(ARGumentos de SetAX). Note que V estéd entre colchetes na instrucéo
'mov'... isso porque V é, na verdade, uma referéncia a memdria (na
pilha!) e toda referéncia & memoria precisa ser cercada com
colchetes (sendo da um baita erro de sintaxe no modo IDEAL!).
Depois da compilacdo o assembler substitui V pela referéncia certa.

Os tipos, basicos, validos para o assembler sdo: BYTE, WORD,
DWORD... Nao existe INTEGER, CHAR como em PASCAL (INTEGER = WORD
com sinal; assim como CHAR = BYTE com sinal!).

Para finalizar: Em um uUnico médulo podem existir varios PROCs:

; modo IDEAL do TASM

aqui entra os GLOBALS para os PROCs que vc queira que

IDEAL
MODEL LARGE, PASCAL ;
LOCALS
JUMPS
; sejam publicos!
CODESEG
PROC P1

; Corpo do PROC P1
ENDP
PROC P2

; Corpo do PROC P2
ENDP
;... outros PROCs...
END ; Fim da listagem

modelamento de meméria...

; Comeco do segmento de cddigo...

Existem MUITOS outros detalhes

objetivo

no curso de ASM é a

com
mixagem

relacdo do TASM...
de cddigo... pls,

mas meu
alguma

davida, mandem mensagem para ca ou via netmail p/ mim em 12:2270/1.

RBT Curso de Assembly Aula N° 01

Por: Frederico Pissarra

Continuando o papo sobre o TASM, precisaremos aprender como
manipular tipos de dados mais complexos do que WORD, BYTE ou DWORD.
Eis a descricdo das estruturas!

Uma estrutura ¢é o agrupamento de tipos de dados simples em uma
Unica classe de armazenamento, por exemplo:

STRUC MyType
A DB ?
B DwWw ?
ENDS

A estrutura MyType acima, delimitada pelas palavras-chava STRUC
e ENDS, foi construida com dois tipos de dados simples (BYTE e WORD)
com os nomes de A e B. Note que as linhas acima apenas declaram a
estrutura, sem alocar espaco na memdéria para ela. Criar uma
'instancia' dessa estrutura é tdo simples quanto criar uma variéavel
de tipo simples:

MyVar MyType <0,0>

A sintaxe € basicamente a mesma de qualquer declaracdo de
variavel em assembly, com a diferenca de que o 'tipo' do dado é o
nome (ou TAG) da estrutura - MyType - e os dados iniciais dos
elementos da estrutura estdo localizados entre os simbolos < e >. Na
linha acima criamos a variavel MyVar, cujos elementos sdo 0 e 0.
Vamos a um exemplo de uso desse novo tipo:

;... Aqui entra o modelamento, ...
DATASEG
MyVar MyType <0,0>
CODESEG
PROC SetA ; Poe valor em A na estrutura.
ARG V ! Byte
mov al, [V]
mov [Myvar.A],al
ret
ENDP
PROC SetB ; Poe valor em B na estrutura.
ARG V : Word
mov ax, [V]
mov [MyVvar.B], ax
ret
ENDP
;... Agqui entra o fim do cdédigo...

Simples, nédo?

Mas, e se quisermos trabalhar com um vetor do tipo MyType?
Vetores de tipos mais simples é facil:

DATASEG

MyVarl dw 10 DUP (0)

CODESEG
PROC Filll
mov cx,10
sub bx, bx
@@FillTypel:
mov [bx+MyVarl], OFFh
add bx, 2
dec CcX
jnz @@FillTypel
ret
ENDP

Aqui fiz da maneira mais dificil apenas para exemplificar um
método de preenchimento de vetores. No caso, BX contém o item
desejado do vetor. MyVarl é o deslocamento do primeiro item do
vetor na meméria e CX a quantidade de itens do vetor. Note que
temos um vetor de WORDS e precisaremos adicionar 2 (tamnho de uma
WORD) para cara item do vetor. No caso da estrutura, isso fica um
pouco mais complicado porque ela pode ter um tamanho ndo multiplo de
2 (o que complica o calculo. Por exemplo, MyType (a estrutura) tem
3 bytes de tamanho. Eis a implementacdo (n&o otimizada) para a

rotina FillType para preenchimento de um vetor de MyType com 10
itens:

DATASEG
MyVar MyType 10 dup (<0,0>)
CODESEG
PROC FillType
mov cx, 10
sub bx, bx ; indice para localizar itens.
@@FillLoop:
mov [bx+MyVar.A], OFFh ; * Instrucdo destacada...
mov [bx+MyVar .B], OFFFFh
add bx, 3
dec CcX
jnz @@FillLoop
ret
ENDP

Essa rotina merece ser observada mais de perto:

Vejamos a instrucdo destacada na listagem acima... MyVar.A
fornece o deslocamento de A, do primeiro item do vetor, na memdria,
enquanto isso BX fornece o indice do item desejado no vetor. Assinm,
BX+MyVar.A fornecerd o offset do elemento A do item da estrutura
desejado.

Well... E isso...

RBT Curso de Assembly Aula N° 16

Por: Frederico Pissarra
Usando a memoria Expandida (EMS).

Muitos modplayers hoje em dia wusam a memdéria expandida para
armazenar os samples. Neste texto veremos como funciona a meméria
expandida e como uséa-la...

A maioria dos PC-ATs com mais de 1Mb de memdéria possui dois
tipos de memoéria:

= Convencional - Na faixa de 0 até 1Mb
= Extendida: de 1Mb em diante.

A meméria extendida é facilmente manipulédvel quando um programa
estd em modo protegido e com toda a meméria mapeada em um ou mais
seletores. O0s 386s permitem que um seletor acesse um segmento de
até 4Gb de tamanho... Mas, ndo ¢é esse 0 nosso caso. Temos um
pequeno programa rodando sob o MS-DOS, no modo real (modo nativo dos
processadores Intel), que tem acesso somente a meméria convencional.
Podemos acessar a meméria extendida através do driver HIMEM.SYS ou
usando wuma funcdo de movimento de blocos da BIOS, mas isso
aumentaria em muito a complexidade do software (e, por conseguéncia,
seu tamanho).

A Lotus, Intel e Microsoft criaram a especificacdo EMS para esse
caso. 0 programa EMM386.EXE, ou qualquer outro gerenciador de
meméria como o QEMM, emula a meméria expandida da mesma forma que
uma maquina com apenas este tipo de meméria faria (A meméria
expandida por hardware ndo fez muito sucesso nos EUA como a meméria
extendida!). A especificacdo EMS simplesmente wusa um espaco da
meméria convencional (chamado de "Page Frame") para armazenar
"paginas" de 16kb da meméria extendida. Isto é... divida a sua
memoria extendida em diversos blocos de 16k e terd o numero de
paginas (pages) que poderdo estar disponiveis para uso.

0 EMM (Expanded Memory Manager) simplesmente faz a coépia das
paginas desejadas para o "Page Frame" para que o nosso software
posssa lé-las e escrevé-las, copiando-as de volta para as paginas
corretas quando fizermos a troca de paginas do '"Page Frame". No
"Page Frame" cabem, normalmente, 4 paginas... fazendo um total de
64kb (ou seja, exatamente o tamanho de um segmento!). Considere a
figura abaixo:

Meméria extendida Meméria extendida
paginada

Page 0

Page 1

Page 2

Page 3

Page 4

Ok... a memdria extendida foi dividida em 'n' paginas de 16k.
0 "Page Frame" fica na memdéria convencional. Por exemplo, suponha
que o "Page Frame" esteja localizado no segmento OCOOGh:

"Page Frame"

0
Pagina fisica 0

16k
Pagina fisica 1

32k
Pagina fisica 2

48k
Pagina fisica 3

64k

Do offset O até 16k-1 fica a primeira pagina do "Page Frame", do
offset 16k até 32k-1 a segunda, e assim por diante. A especificacéo
EMS nos permite colocar apenas 4 péaginas no "Page Frame". Assim, o
nosso programa escolhe cada uma das quatro "paginas 1légicas" que
serdo copiadas da memdéria extendida para cada uma das quatro
"paginas fisicas" do Page Frame.

Vale a pena lembrar que o Page Frame esta sempre em algum lugar
da meméria convencional, portanto acessivel aos programas feitos
para MS-DOS, que normalmente trabalham em modo real.

A interrupcdo 67h ¢é a porta de entrada para as funcbes do EMM
(EMM386, QEMM, 386MAX, entre outros). Mas antes de comecarmos a
futucar o EMM precisamos saber se ele estd presente... Eis a rotina
de deteccdo do EMM p/ os compiladores C da BORLAND:

#include <io.h>
#include <fcntl.h>
#include <dos.h>

#define CARRY_BIT (_FLAGS & 0x01)

/* Obtém a maior versdo do EMM - definida em outro médulo! */
extern int emm_majorVer(void);

/* Testa a presenca do EMM
Retorna @ se EMM n&o presente ou verséo < 3.XxX
Retorna 1 se tudo ok! */

int isEMMpresent(void)

{

int handle;

/* Tenta abrir o device driver EMMXXXX0 para leitural! */
if ((handle = open("EMMXXXX®", O_BINARY | O_RDONLY)) == -1)
return 0Q; /* Ndo tem EMM! */

/* Verifica se é um arquivo ou dispositivo. Usa IOCTL para isso! */
_BX = handle;
_AX = 0x4400;
geninterrupt(0x21);
if ('(_DX & 0x80))
return ©; /* E um arquivo!!! Ndo é o EMM! */

/* Verifica o dispositivo estéd ok */

_BX = handle;

_AX = 0x4407,

geninterrupt(0x21);

if (CARRY_BIT || !'_AL) return 0; /* Nao esta ok */

/* Verifica a versdo do EMM. Para nossos propésitos tem que ser >= 3.xx */
if (emm_majorVer() < 3) return 0; /* Ndo é ver >= 3.xx */

/* Tudo ok... EMM presente */
return 1,

No préoximo texto mostrarei como usar o EMM.

RBT

Curso de Assembly Aula N° 17

Por: Frederico Pissarra

Eis o
expandida:

arquivo

.ASM com as rotinas para manipulagdo da memoéria

IDEAL
MODEL LARGE, PASCAL
LOCALS
JUMPS

GLOBAL emmGetVersion : PROC

GLOBAL emmGetPageFrameSegment : PROC
GLOBAL emmGetAvailablePages : PROC
GLOBAL emmAllocPages : PROC

GLOBAL emmFreePages : PROC

GLOBAL emmMapPage : PROC

GLOBAL emmGetError : PROC

DATASEG

emmVersion dw O

emmError db © ; Nenhum erro ainda... :)
CODESEG

; Obtém a versédo do EMM.

; Devolve no formato Ox0XOY (onde X é versdo e Y revisdéo).
; Protétipo em C:

; unsigned pascal emmGetVersion(void);

P

ROC emmGetVersion
mov [emmError],0 ; Inicializa flag de erro...
mov ah, 46h
int 67h ; Invoca o EMM
or ah, ah ; Testa o sucesso da funcéo...
jz @@no_error
mov [emmError],ah ; Poe erro no flag...
mov ax, -1 , ... e retorna !'= 0.
jmp @@done
mov ah,al ; Prepara formato da verséo.
and ax,111100001111b ; A funcdo 46h do EMM devolve
mov [emmVersion],ax ; no formato BCD... por isso
@@done: ; precisamos formatar...
ret

ENDP

; Funcdo: Obtém o segmento do Page Frame.

; Protétipo em C:

; unsigned pascal emmGetPageFrameSegment(void);
PROC emmGetPageFrameSegment

mov ah, 41h ; Usa a funcdo 41h do EMM
int 67h ; Chama o EMM
mov ax, bx ; Poe o segmento em AX
; Funcdo 41h coloca o segmento do
; "Page Frame" em BX.
ret
ENDP

Funcdo: Obtém o numero de paginas disponiveis na memodria.
Protétipo em C:
unsigned pascal emmGetAvailablePages(void);

U~ ~- ~= o~ o~

Obs:
Ndo verifica a ocorrencia de erros... modifique se quiser
ROC emmGetAvailablePages
mov ah, 42h
int 67h ; Invoca o EMM,
mov ax, bx ; Poe paginas disponiveis em AX.
ret
ENDP

; Aloca paginas e devolve handle.
; Protétipo em C:

; int pascal emmGetAvailablePages(unsigned Pages);
; Obs: Devolve -1 se houve erro na alocacao e seta

; a variavel emmError.

PROC emmAllocPages

ARG Pages :WORD
mov [emmError],0 ; Inicializa flag de erros...
mov bx, [Pages] ; BX = nuimero de paginas a alocar
mov ah, 43h
int 67h ; Invoca o EMM.
or ah, ah ; Verifica erro do EMM.
jz @@no_error
mov [emmError],ah ; Poe erro na variavel emmError
mov dx, -1
@@no_error:
mov ax, dx ; retorna cddigo de erro.
; ou o handle.
ret
ENDP

; Libera pé&ginas alocadas.
; Protétipo em C:
; void pascal emmFreePages(int handle);
; Obs: Ndo verifica erros... modifique se quiser...
PROC emmFreePages
ARG handle:WORD
mov dx, [handle]
mov ah, 45h
int 67h
ret
ENDP

Mapeia uma pagina no Page Frame.
Protétipo em C:
int pascal emmMapPage(int handle,
unsigned char pfPage,
unsignec PageNbr);
onde: handle é o valor devolvido pela funcdo de alocacédo de
paginas.
pfPage é o numero da pagina do Page Frame (0@ até 3).
PageNbr ¢é o numero da pagina a ser colocada no
Page Frame (0 até maximo - 1).
; Devolve -1 se ocorreu erro e seta a varidvel emmError.
PROC emmMapPage

Ne N® Ns N®= Ns= N= Ns N= N= N»

ARG handle:WORD, pfPage:BYTE, PageNbr:WORD
mov [emmError],0
mov ah, 44h
mov al, [pfPage]
mov bx, [PageNbr]
mov dx, [handle]
int 67h
or ah, ah
jz @@no_error
mov [emmError],ah
mov ah, -1

@@no_error:
mov al, ah
ret

ENDP

; Retorna com o erro do EMM.

; Protétipo:

; int pascal emmGetError(void);
PROC emmGetError

mov ax, [emmError]
ret
ENDP
END
Esta é wuma implementacéo simplificada, mas para nossos

propésitos serve muito bem. Algumas consideracdes: A alocacdo de
memoria via EMM ndo é feita da mesma maneira que a fungdo malloc()
de C ou GetMem() do TURBO PASCAL. N&o é devolvido nenhum pointer.
Isto se torna 6bvio a partir do momento que entendemos como funciona
0 EMM: Toda a manipulacdo de bancos de meméria ¢é feita de forma
indireta pelo Page Frame. A funcdo de alocacdo deve apenas devolver
um handle para que possamos manipular as paginas alocadas. Entenda
esse handle da mesma forma com que os arquivos sdo manipulados...
Se quisermos wusar um banco alocado precisamos informar ao EMM qual
dos bancos queremos usar, fazendo 1isso via o handle devolvido pelo
proprio EMM.

Suponha que queiramos alocar 128kb da memdéria expandida para o
nosso programa. Precisamos alocar 8 paginas légicas (8 * 16k =
128k). Chamariamos a fungdo emmAllocPages() em C da seguinte forma:

#include <conio.h>
#include <stdlib.h>

int emm_handle;
void f(void)
/* */

if ((emm_handle = emmAllocPages(8)) -1) {
cprintf("EMM ERROR #%d\r\n", emmGetError());

exit(1);
}
/* */

}

Na funcdo emmAllocPages() optei por devolver -1 para indicar o
insucesso da funcdo... Vocé pode arrumar um esquema diferente para
chegar isso (por exemplo, checando a variavel emmError apés a
chamada a funcgéo!).

Well... Temos 8 paginas loégicas disponiveis. E agora?... As 8
paginas estdo sempre numeradas de © até o maximo - 1. NO nosso caso
teremos as paginas 0@ até 7 disponiveis ao nosso programa. Lembre-se

que cada uma tem apenas 16k de tamanho e que podem ser arranjadas de

gqq maneira g vc queira no Page Frame. Vamos usar as 4 paginas
iniciais como exemplo... para 1isso precisamos mapea-las no Page
Frame usando a fung¢do emmMapPage().
void f(void)
int i;
/* a0
for (1 = 0; 1 < 4; i++)
emmMapPage (emm_handle, i, i);
}
Depois deste pequeno loop sabemos que qualquer alteracdo no
conteudo do Page Frame alterard as péaginas que estdo mapeadas
nele...:) Simples né? SO nos resta conhecer o endere¢co inicial do

Page Frame:

#include <dos.h>

void f(void)

void far *PageFrameAddr;

{
VAV
PageFrameAddr = MK_FP(emmGetPageFrameSegment(), 0);
/* */

Ao fim do uso da memdéria expandida precisamos dealocar o espaco

previamente alocado... C e C++ dealocam automaticamente qualquer
espaco alocado por malloc(), calloc() e fungdes afins... Ndo é o
caso de nossas rotinas acima... entdo acostume-se a manter a casa

em ordem e usar a funcdo emmFree() quando nédo precisar mais das
paginas alocadas.

Isso tudo néo funcionara se o EMM nédo estiver instalado... No
texto anterior mostrei a rotina para determinar a presenca do EMM.
E, no mesmo texto, apareceu a rotina emm_majorVer(). Eis a rotina
abaixo:

int emm_majorVer(void)
{ return ((int)emmGetVersion() >> 8); }

RBT Curso de Assembly Aula N° 18

Por: Frederico Pissarra

Hummmm... Estamos na era dos 32 bits... entéo por que esperar
mais para discutirmos as novidades da linha 386 e 4867 Eles néo
diferem muito do irmdo menor: o 8086. A ndo ser pelo fato de serem
"maiores". :)

O 8086 e 80286 tém barramento de dados de 16 bits de tamanho
enquanto o 386 e o 486 tem de 32 bits. Nada mais justo que existam
modificacBes nos registradores também:

31 16 15 (0]
AH A% AL EAX
BH B% BL EBX
CH C% CL ECX
DH D% DL EDX

0s registradores de uso geral continuam os velhos conhecidos de
sempre... SO que existem os registradores de uso geral de 32 bits:
EAX, EBX, ECX e EDX, onde os 16 bits menos significativos destes séo
AX, BX, CX e DX, respectivamente.

31 16 15 0
SI ESI
DI EDI
BP EBP
SP ESP

Da mesma forma, os registradores SI, DI, BP e SP ainda estéo
aqui... bem como os seus equivalentes de 32 bits: ESI, EDI, EBP e
ESP.

Os registradores de segmento (chamados de SELETORES desde o
surgimento do 80286) sdo o0s mesmos e ndo mudaram de tamanho,
continuam com 16 bits: CS, DS, ES e SS. Mas acrecentaram outros: FS
e GS. 1Isto é... Agora existe um registrador de segmento de cddigo
(CS), um segmento de pilha (SS) e quatro segmentos de dados (DS, ES,
FS e GS). Lembrando que DS ¢é o segmento de dados default. Repare
na ordem alfabética dos registradores de segmento de dados...

0 registrador Instruction Pointer também continua o mesmo...
E também existe o seu irm&o maior... EIP:

31 16 15 (0]

IP EIP

Da mesma forma os FLAGS também sdo os mesmos de sempre... mas O
registrador FLAGS também foi expandido para 32 bits e chamado de
EFLAGS. 0s sinalizadores extras s&do usados em aplicacbes especiais
(como por exemplo, chaveamento para modo protegido, modo virtual,
chaveamento de tarefas, etc...).

Alguns outros registradores foram adicionados ao conjunto: CRO,
CR1, CR3, TR4 a TR7. DRO a DR3, DR6 e DR7 (todos de 32 bits de
tamanho). Esses novos registradores sdo usados no controle da CPU
(CR?), em testes (TR?) e DEBUG (DR?). N&o tenho maiores informacdes
sobre alguns deles e por isso ndo vou descrevé-los aqui.

Novas instrucdes foram criadas para o 386 e ainda outras mais
novas para o 486 (imagino que devam existir outras instrucdes
especificas para o Pentium!). Eis algumas delas:
= BSF (Bit Scan Forward)

Processador: 386 ou superior

Sintaxe: BSF dest, src

Descricéo:
Procura pelo primeiro bit setado no operando "src". Se
encontrar, coloca o numero do bit no operando "dest" e seta o flag
Zero. Se nao encontrar, o operando "dest" conterd um valor

indefinido e o flag Zero ser& resetado. BSF procura o bit setado
comecando pelo bit 0 do operando "src".

Exemplo:
BSF AX, BX
= BSR (Bit Scan Reverse)
Processador: 386 ou superior
Sintaxe: BSR dest,src
Descricdo:

Faz a mesma coisa que BSF, porém a ordem de procura comeca a
partir do bit mais significativo do operando "src".

Exemplo:

BSR AX, BX

= BSWAP
Processador: 486 ou superior
Sintaxe: BSWAP reg32
Descricéo:
Inverte a ordem das words de um registrador de 32 bits.
Exemplo:
BSWAP EAX
= BT (Bit Test)
Processador: 386 ou superior
Sintaxe: BT dest,src

Descricéo:

Copia o conteldo do bit do operando "dest" indicado pelo
operando "src" para o flag Carry.

Exemplo:
BT AX,3

Observacdes:

1- Aparentemente esta instrucdo n&o aceita operandos de 32
bits.

2- No exemplo acima o bit 3 de AX sera copiado para o flag
Carry.
w BTC (Bit Test And Complement)
Processador: 386 ou superior

Sintaxe: BTC dest,src

Descricéo:

Instrugdo identica a BT, porém complementa (inverte) o bit
do operando "dest".

= BTR e BTS
Processador: 386 ou superior

Sintaxe: BTR dest, src
BTS dest, src

Descricéo:

Instrugbes identicas a BT, porém BTR zera o bit do operando
destino e BTS seta o bit do operando destino.

w CDQ (Convert DoubleWord to Quadword)
Processador: 386 ou superior
Sintaxe: CDQ
Descricéo:

Expande o conteudo do registrador EAX para o par EDX e EAX,
preenchendo com o bit 31 de EAX os bits de EDX (extensdo de sinal).

= CWDE (Convert Word to DoubleWord Extended)
Processador: 386 ou superior
Sintaxe: CWDE
Descricéo:

Esta instrucdo expande o registrador AX para EAX,
considerando o sinal. Ela é equivalente a instruc&o CWD, porém néo
usa o par DX:AX para isso.
= CMPXCHG

Processador: 486 ou superior

Sintaxe: CMPXCHG dest, src

Descricéo:
Compara o acumulador (AL, AX ou EAX - dependendo dos
operandos) com o operando '"dest". Se forem iguais o acumulador é

carregado com o conteudo de "dest", caso contrario com o conteludo de
n n
src".

Exemplo:
CMPXCHG BX, CX
= INVD (Invalidate Cache)
Processador: 486 ou superior
Sintaxe: INVD
Descricéo:
Limpa o cache interno do processador.
= JECXZ
Processador: 386 ou superior

Observacdo: E identica a instrugdo JCXZ, porém o teste é feito
no registrador extendido ECX (32 bits).

= LGS e LFS
Processador: 386 ou superior

Observacdo: Essas instrucgfes sd@o identicas as instrucgbes LDS e
LES, porém trabalham com os novos registradores de segmento.

= MOVSX e MOVZX
Processador: 386 ou superior

Sintaxe: MOVSX dest, src
MOVZX dest, src

Descricdo:

Instrucbes Uteis quando queremos 1lidar com operandos de
tamanhos diferentes. MOVZX move o conteudo do operando "src" para
"dest" (sendo que "src" deve ser menor que "dest") zerando os bits
extras. MOVSX faz a mesma coisa, porém copiando o ultimo bit de
"src" nos bits extras de "dest" (conversdo com sinal).

Exemplo:

* Usando instrucdes do 8086, para copiar AL para BX
precisariamos fazer isto:

MOV BL, AL
MOV BH, ©

* Usando MOVZX podemos simplesmente fazer:
MOVzZX BX, AL
w Instrucdo condicional SET
Processador: 386 ou superior

Sintaxe: SET? dest
(Onde ? é a condigdo...)

Descricéo:

Poe 1 no operando destino se a condicdo for satisfeita.
Caso contrario poe 0.

Exemplo:
SETNZ AX
SETS EBX

SETZ CL

= SHRD e SHLD (Double Precision Shift)
Processador: 386 ou superior

Sintaxe: SHRD dest, src, count
SHLD dest, src, count

Descricéo:

Faz o shift para esquerda (SHLD) ou direita (SHRD) do
operando "dest" "count" vezes, porém os bits que seriam preenchidos
com zeros sdo preenchidos com o contéudo dos bits do operando "src".
Eis um grafico exemplificando:

SHRD
src dest

—— Carry

n (0] n (0]

0 operando "src" ndo é alterado no processo. 0 flag de Carry
contém o ultimo bit que "saiu" do operando "dest".

Exemplo:

SHLD EAX, ECX, 3
SHRD AX, BX, CL

= Instrucdes que manipulam blocos...

CMPSD, LODSD, MOVSD, STOSD, INSD e OUTSD se comportam da mesma
forma que suas similares de 8 ou 16 bits (CMPSB, CMPSW, etc..),
porém usam o0s registradores extendidos (ESI, EDI, ECX, EAX) e operam
com dados de 32 bits de tamanho (DoubleWords).

Existem mais instrucdes... Consulte algum manual da Intel ou o
hipertexto HELPPC21... Pedirei aos Sysops do VixNET BBS (agora com
6 linhas hehehe) para deixarem disponivel o arquivo 386INTEL.ZIP...
que é o guia técnico para o processador 386.

Duvidas a respeito dos novos recursos:

[Q] Os segmentos tem mais que 64k no modo real, j& que o0s
registradores extendidos podem ser usados neste modo? Como
funcionaria uma instrucdo do tipo:

MOV [ESI+3], EAX
[R] Na&o... no modo real os segmentos continuam a ter 64k de
tamanho. O0s registradores extendidos podem ser usados a vontade e,
quando usados como offset em um segmento, os 16 bits superiores séo
ignorados. A instrucdo apresentada funcionaria da mesma forma que:
MOV [SI+3],EAX

[Q] Onde e guando deve-se usar o0s novos registradores de segmentos?
[R] Onde e quando vocé quiser. Pense neles como se fosse novos

segmentos de dados extras. Na realidade vocé apenas conseguiré
usd-los se explicitd-los numa instrucdo que faz referéncia a
meméria, por exemplo:

MOV FS:[BX],AL
[Q] Posso usar os registradores extendidos nas instrugdes normais ou
apenas nas novas instrucdes?
[R] Pode wusa-los nas instrucdes '"normais". A ndo ser que a
instrucdo ndo permita operandos de 32 bits...

That's all for now...

RBT Curso de Assembly Aula N° 19

Por: Frederico Pissarra
0i povo...

Estou retomando o desenvolvimento do curso de assembly aos
poucos e na nova série: Otimizacdo de c6digo para programadores C.
Well... vdo algumas das rotinas para aumentar a velocidade dos
programas C que lidam com strings:

strlen()

A rotina strlen() ¢é implementada da seguinte maneira nos
compiladores C mais famosos:

int strlen(const char *s)
L
int 1 = 0,
while (*s++) ++i;
return 1i;
}

Isso gera um cddigo aproximadamente equivalente, no modelo
small, a:

PROC _strlen NEAR
ARG S:PTR
push si ; precisamos preservar
push di ; SI e DI.
xor di,di ;1= 0;
mov si,s
@@_strlen_loop:
mov al, [si]
or al,al ; ¥*s == '"\0'?
jz @@_strlen_exit ; sim... fim da rotina.
inc si ; S++;
inc di ;o +H+i;
jmp short @@_strlen_loop ; retorna ao loop.
@@_strlen_exit:
mov ax, si ; coloca i em ax.
pop si ; recupara SI e DI.
pop di
ret
ENDP

Eis uma implementacdo mais eficaz:

#ifdef _TURBOC__

#include <dos.h> /* Inclui pseudo_registradores */
#define _asm asm
#endif
int Strlen(const char *s)
{
_asm push es

#ifndef _ TURBOC_ _

_asm push di
#endif
#if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)
_asm les di,s
#else
_asm mov di,ds
_asm mov es,di
_asm mov di,s
#endif
_asm mov cx, -1
_asm sub al,al

_asm repne scasb

_asm not cX
_asm dec cX
_asm mov ax, cx

#ifndef __TURBOC___
_asm pop di
#endif

_asm pop es

#ifdef _ TURBOC_
return _AX;
#endif

}

Essa nova Strlen() [Note que é Strlen() e ndo strlen(), para néo
confundir com a funcdo que ja existe na biblioteca padrédo!] é, com
certeza, mais réapida que strlen(), pois wusa a instrucdo "repne
scasb" para varrer o vetor a procura de um caracter '\@', ao invés
de recorrer a varias instrucdes em um loop. Inicialmente, CX tem
que ter o maior valor possivel (-1 ndo sinalizado = 65535). Essa
funcdo falha no caso de strings muito longas (maiores que 65535
bytes), dai precisaremos usar strlen()!

Uma vez encontrado o caracter '\@' devemos inverter CX. Note
que se invertermos 65535 obteremos ©. Acontece que o caracter '\@'
tambem ¢é contado... dai, depois de invertermos CX, devemos

decrementa-lo também, excluindo o caracter nulo!

Ndo se preocupe com DI se vc usa algum compilador da BORLAND, o
compilador trata de salva-lo e recupera-lo sozinho...

strcpy()

Embora alguns compiladores sejam espertos o suficiente para usar
as intrucgbes de manipulacdo de blocos a implementacdo mais comum de
strcpy é:

char *strcpy(char *dest, const char *src)
{

char *ptr = dest;

while (*dest++ = *src++);

return ptr;
}

Para maior compreencdo a linha:

while (*dest++ = *src++);

Pode ser expandida para:

while ((*dest++ = *src++) != '\0');

0 cédigo gerado, no modelo small, se assemelha a:

PROC _strcpy

ARG dest:PTR, src:PTR
push si ; Salva SI e DI
push di
mov si, [dest] ; Carrega os pointers
push si ; salva o pointer dest
mov di, [src]

@@_strcpy_loop:

mov al,byte ptr [di] ; Faz *dest = *src;
mov byte ptr [si],al
inc di ; Incrementa os pointers
inc si
or al,al ; AL == 07!
jne short @@_strcpy_loop ; Nao! Continua no loop!
pop ax ; Devolve o pointer dest.
pop di ; Recupera DI e SI
pop si
ret
ENDP

Este cédigo foi gerado num BORLAND C++ 4.02! Repare que as
instrucdes:

mov al,byte ptr [di] ; Faz *dest = *src;
mov byte ptr [si],al

Poderiam ser facilmente substituidas por um MOVSB se a ordem dos
registradores de indice nao estivesse trocada. Porém a
substituig8o, neste caso, causaria mais mal do que bem. Num 386 as
instrucdes MOVSB, MOVSW e MOVSD consomem cerca de 7 ciclos de
maquina. No mesmo microprocessador, a instrucdo MOV, movendo de um
registrador para a meméria consome apenas 2 ciclos. Perderiamos 3
ciclos em cada iteracdo (2 MOVS = 4 ciclos). Numa string de 60000
bytes, perderiamos cerca de 180000 ciclos de maquina... Considere
que cada ciclo de maquina NAO é cada ciclo de clock. Na realidade
um Unico ciclo de maquina equivale a alguns ciclos de clock - vamos
pela média... 1 ciclo de maquina 3 2 ciclos de clock, no melhor dos
casos!

Vamos dar uma olhada no mesmo cédigo no modelo LARGE:

PROC _strcpy
ARG dest:PTR, src:PTR
LOCAL temp:PTR
mov dx, [word high dest]
mov ax, [word low dest]
mov [word high temp], dx
mov [word low temp], ax
@@_strcpy_loop:
les bx, [src]
inc [word low src]
mov al, [es:bx]
les bx, [dest]
inc [word low dest]
mov [es:bx],al
or al,al
jne short @@_strcpy_loop
mov dx, [word high temp]
mov ax, [word low temp]
ret
_strcpy endp
Opa... Cade os registradores DI e SI?! 0s pointers séao
carregados varias vezes durante o loop!!! QUE DESPERDICIO! Essa

strcpy() € uma séria candidata a otimizacéo!

Eis a minha implementacéo todos

(assim como Strlen()!):

para

os modelos de memoéria

char *Strcpy(char *dest, const char *src)

{
_asm push es
#if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)
_asm push ds
_asm 1ds si, src
_asm les di, dest
#else
_asm mov si,ds
_asm mov es,si
_asm mov si,src
_asm mov di, dest
#endif
_asm push si

Strcpy_loop:

_asm mov al, [si]
_asm mov es:[di],al
_asm inc si
_asm inc di
_asm or al,al
_asm jne Strcpy_loop
_asm pop ax

#if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT_)
_asm mov ax, ds
_asm mov dx, ax
_asm pop ds

#endif
_asm pop es

3

Deste jeito o0s pointers sdo carregados somente uma vez, 0s
registradores de segmento DS e ES s&do usados para conter as
componentes dos segmentos dos pointers, que podem ter segmentos
diferentes (no modelo large!), e os registradores SI e DI sdo usados
como indices separados para cada pointer!

A parte critica do cédigo é o interior do 1loop. A lnica
diferenca entre essa rotina e a rotina anterior (a ndo ser a carga
dos pointers!) é a instrucao:

_asm mov es:[di], al
Que consome 4 ciclos de maquina. Poderiamos usar a instrucéo
STOSB, mas esta consome 4 ciclos de maquina num 386 (porém 5 num
486) . Num 486 a instrucdo MOV consome apenas 1 ciclo de maquina!

Porque MOV consome 4 ciclos neste caso?! Por causa do registrador
de segmento explicitado! Lembre-se que o registrador de segmento DS
é usado como default a ndo ser que usemos 0S registradores BP ou SP
como indice!

Se vc estd curioso sobre temporizacdo de instrucdes asm e
otimizacdo de cdédigo, consiga a mais nova versdo do hypertexto
HELP_PC. Ele é muito bom. Quanto a livros, ai vao dois:

= Zen and the art of assembly language
= Zen and the art of code optimization

Ambos de Michael Abrash.

AHHHHHHHH... Aos mais atenciosos e experientes: Nao coloquei o
prélogo e nem o epilogo das rotinas em ASM intencionalmente. Notem
gue estou usando o modo IDEAL do TURBO ASSEMBLY para ndo confundir
mais ainda o pessoal com notacbes do tipo: [BP+2], [BP-6], e
detalhes do tipo decremento do stack pointer para alocacdo de
variaveis locais... Vou deixar a coisa o mais simples possivel para
todos. ..

Da mesma forma: Um aviso para os novatos... NAO TENTEM
COMPILAR os cédigos em ASM (Aqueles que comeg¢do por PROC)... Eles
sdo apenas uma demonstracdo da maneira como as func¢bes "C" sé&o
traduzidas para o assembly pelo compilador, ok?

Well... préximo texto tem mais...

RBT Curso de Assembly Aula N° 20

Por: Frederico Pissarra

Impressionante como as demonstracdes graficas (DEMOS) conseguem
ser tdo rapidas com todas aquelas transformacdes geométricas
(objetos movimentando-se no espaco tridimensional), musicas em
background, etc... A complexidade sugere a utilizacdo de rotinas em
ponto-flutuante para 0s calculos "cabeludos"... Opa!
Ponto-flutuante?! Mas 1isso é muito lerdo!!!! Toma muito tempo de
CPU... E nem sempre o feliz proprietario de um microcomputador tem
um 486DX ou um 386 com co-processador! Como €é que esses caras
conseguem tanta velocidade?!

A resposta pode estar num método conhecido como "aritimética de
ponto-fixo", que é o objetivo deste texto!

Imagine que possamos escrever um namero "quebrado" (com casas
decimais) da seguinte maneira:

msb 1sb

parte inteira | parte fracionaria

A "casa" mais a esquerda é o bit mais significativo, e a mais a
direita o menos significativo. Assim os 16 bits mais significativos
(parte inteira) nos diz a "parte inteira" do numero (l6gico, né?).
E os 16 bits menos significativos (parte fracionaria) nos diz a
parte fraciondria do numero (outra vez, ldégico!). De forma que o
bit menos significativo destes 32 bits é equivalente a 2 elevado a
poténcia de -16 (ou seja: 1/65536). Eis um exemplo:

0000000000000E00.1000000000000000b = 0.5 = 1/2
0000000000000000.0100000000000000b = 0.25 = 1/4
0000000000000000.0010000000000000b = 0.125 = 1/8
0000000000000C00.1110000000000000b = 0.875
0000000000000001.1000000000000000b = 1.5 = 1 + 1/2
0000000000000011.0010010000111111b = 0 (aprox.)

(0000000000000000.11011101101160011b = cos(l/6) = 0.866 (aprox.)

Ndo sei se deu para entender, mas do bit menos significativo até
0 mais significativo, o expoente vai aumentando, sé que o bit menos
significativo tem expoente -16. Assim, o bit 1 tem expoente -15, o
seguinte -14, etc... até o ultimo, 15. 0 ponto entre os dois
conjuntos de 16 bits foi adicionado apenas para facilitar a
visualizacdo no exemplo acima.

Ok... entdo é possivel representar "numeros quebrados" em dois
conjuntos de 16 bits... a pergunta é: Pra que?!

Aritimética com ndmeros inteiros sempre é mais rapida do que a
aritimética com numeros em ponto-flutuante. Tendo co-processador ou
nao! Mesmo que vc tenha um 486DX4 100MHz, os calculos em

ponto-flutuante serdo mais lerdamente efetuados do que o0s mesmos
calculos com numeros inteiros (usando os registradores da CPU!).
Neste ponto entra a aritimética de ponto-fixo (note que o "ponto
decimal" ndo muda de posicéo...). Vejamos o0 que acontece se
somarmos dois numeros em ponto fixo:

0.25 + 1.75 = 2.0
0000000000N0OEN0.01000000ENOBEEEBL = 0.25

+ 0000000000000001.1100000000000000b = + 1.75
0000000000000010.00000000ENOOENEBL = 2.00

Realmente simples... é apenas uma soma binaria... Suponha que

tenhamos um numero em ponto fixo no registrador EAX e outro no EDX.
0 codigo para somar os dois numeros ficaria t&o simples quanto:

ADD EAX, EDX

0 mesmo ocorre na subtracdo... Logicamente, a subtracdo é uma
adicdo com o segundo operando complementado (complemento 2), entéo
ndo ha problemas em fazer:

SUB EAX, EDX

A adicdo ou subtracdo de dois numeros em ponto fixo consome de 1
a 2 ciclos de maquina apenas, dependendo do processador... 0 mesmo
ndo ocorre com aritimética em ponto-flutuante!

A complicac8o comega a surgir na multiplicacdo e divisdo de dois
numeros em ponto-fixo. Ndo podemos simplesmente multiplicar ou
dividir como fazemos com a soma:

oJofoJofefofefofelofelolelolo) RMloleloefoefoofolofelofeIofelo]
* 0000000000000001.0000000000000000

00000000OOOOOOOO.O0EOEOOOOOLOEOEO + carry

Nultiplicando 1 por 1 deveriamos obter 1, e ndo 0. Vejamos a
multiplicacdo de dois valores menores que 1 e maiores que 0O:

000000COOOOOOOOO.100000000O0COCO0 0.5
* 0000000000000000.100000000000000 * 0.5

0100000000000000.000000000000000 16384.0

Hummm... o resultado deveria dar 0.25. Se dividirmos 0
resultado por 65536 (2716) obteremos o resultado correto:

0100000000000000.000000000000000 >> 16
000000COOOOONONO.010000COCOEOEO0

0.25

Ahhh... mas, e como ficam os numeros maiores ou iguais a 1?! A
instrugdo IMUL dos microprocessadores 386 ou superiores permitem a
multiplicacdo de dois inteiros de 32 bits resultando num inteiro de
64 bits (o resultado ficard em dois registradores de 32 bits
separados!). Assim, para multiplicarmos dois numeros em ponto fixo
estabelecemos a seguinte regra:

resultado
resultado

(n1 * n2) / 65536 ou
(n1 * n2) >> 16

Assim, retornando ao primeiro caso de multiplicacdo (em notacgéo
hexa agora!):

0001.0000h * 0001.0000h = EEOOOOO1EEC0.0006H
Efetuando o shift de 16 bits para a direita:

00010000.0000h >> 16 = 0001.0000h

Em assembly isso seria tdo simples como:

PROC FixedMul
ARG ml:DWORD, m2:DWORD
mov eax,ml
mov ebx, m2
imul ebx
shrd eax, edx, 16
ret
ENDP

A instrucdo IMUL, e ndo MUL, foi wusada porque os numeros de
ponto fixo sdo sinalizados (o bit mais significativo é o sinall).
Vale aqui a mesma regra de sinalizacdo para numeros inteiros: Se o
bit mais significativo estiver setado o numero € negativo e seu

valor absoluto é obtido através do seu complemento (complemento 2).

Quanto a manipulacdo dos sinais numa multiplicacdo... deixe isso com
o IMUL! :)
A divisdo também tem as suas complicac¢bes... suponha a seguinte
diviséo:
0001.00006h

= 0000.0000h (resto = 0001.000h)
0002.0000h

A explicacdo deste resultado é simples: estamos fazendo diviséo
de dois numeros inteiros... Na aritimética inteira a divisdo com o
dividendo menor que o divisor sempre resulta num quociente zero!

Eis a solucao: Se o0 divisor estad deslocado 16 bits para
esquerda (20000h ¢é diferente de 2, certo!?), entdo precisamos
deslocar o dividendo 16 bits para esquerda antes de fazermos a
divisao! Felizmente o0s processadores 386 e superiores permitem
divisdes com dividendos de 64bits e divisores de 32bits. Assim, o
deslocamento de 16 bits para esquerda do dividendo nao é
problematica!

0001.0000h << 16 = 00010000.0000h
00010000.0000h / 0002.0000h = 0000.8000h

ou seja:

Eis a rotina em assembly que demonstra esse algorritmo:

PROC FixedDiv
ARG d1:DWORD, d2:DWORD
mov eax,d1l ; pega dividendo
mov ebx, d2 ; pega divisor
sub edx, edx
shld edx, eax, 16
shl eax, 16
idiv ebx
ret
ENDP
Isso tudo é muito interessante, n&do?! Hehehe... mas vou deixar
vc mais desesperado ainda: A divisdo tem um outro problema! E

quanto aos sinais?! O bit mais significativo de um inteiro pode ser
usado para sinalizar o numero (negativo = 1, positivo = 0), neste
caso teremos ainda que complementar o numero para sabermos seu valor
absoluto. Se simplesmente zeraramos EDX e o bit mais significativo
estiver setado estaremos dividindo um ndmero positivo por outro
numero qualquer (ja que o bit mais significativo dos 64bits
resultantes sera 0!). Vamos complicar mais um pouquinho o cédigo
da divisdo para sanar este problema:

PROC FixedDiv
ARG d1:DWORD, d2:DWORD
sub cl,cl
mov eax,dl
or eax, eax
jns @@no_chs1
neg eax
inc cl
@@no_chs1:
mov ebx, d2
or ebx, ebx
jns @@no_chs2
neg ebx
dec cl
@@no_chs2:
sub edx, edx
shld edx, eax, 16
shl eax, 16
div ebx
or cl,cl
jz @@no_chs3
neg eax
@@no_chs3:
ret
ENDP

= flag
== 0 - resultado positivo.
0 - resultado negativo.

pega dividendo

é negativo?!
ndo! entdo ndo troca sinal!

é! entdo troca o sinal e...
incrementa flag.

pega divisor

é negativo?!
ndo! entdo ndo troca sinal!

é! entdo troca sinal e...
decrementa flag.

divis8o de valores positivos...

ndo precisamos de idiv!

flag == 07
sim! resultado é positivo.

ndo! resultado é negativo...
. troca de sinall!

Se ambos os valores sdo negativos (d1 e d2)
Note que se d1 é negativo CL é incrementado.
CL é decrementado (retornando a

sera
depois...

positivo.
se d2 também é

negativo,

entdo o

0). A rotina ent8o efetuara divisdo de valores positivos e

no final é que mudard o sinal do resultado,

Uma consideracéo

a fazer é:

ponto flutuante em ponto-fixo e vice-versa?!

Comecemos

fracionaria.

nos da

mais que simples:

16 bits de

pela transformacdo de numeros inteiros em ponto-fixo:
0 nosso ponto-fixo estd situado exatamente no meio de uma doubleword
(DWORD), o que

parte inteira

resultado

se for necessario!

Como "transformo" um numero em

e 16 de parte
A transformacdo de um numero inteiro para ponto-fixo é

FixP = I * 65536 ou
FixP = I << 16
onde FixP Fixed Point (Ponto fixo)

I Integer (Inteiro)

Desta forma os 16 bits superiores conterdo o numero inteiro e os
16 bits inferiores estardo zerados (um inteiro nado tem parte
fracionaria, tem?!).

Se quisermos obter a componente inteira de um numero de ponto
fixo basta fazer o shift de 16 bits para direita.

A mesma regra pode ser usada para transformacéo de
ponto-flutuante para ponto-fixo, sO6 que ndo usaremos shifting e sim
multiplicaremos explicitamente por 65536.0! Suponha que queiramos
transforma o numero PI em ponto-fixo:

FixP = FloatP * 65536.0

FixP = 3.1415... * 65536.0 = 205887.4161
FixP = 205887

FixP = 0003.2439h

0 que nos d4 uma boa aproximacdo (se transformarmos 32439h em
ponto flutuante novamente obteremos 3.14149475...). Apenas a parte
inteira do resultado (205887.4161) nos interessa. (205887). Mas
apareceu um pequenino problema que talvez vc ndo tenha notado...

Suponha que o resultado da multiplicacdo por 65536.0 desse
205887.865 (por exemplo, ta?!). Esse numero estd mais préximo de
205888 do que de 205887! Se tomarmos apenas a componente inteira do
resultado obteremos um erro ainda maior (ponto-fixo ndo é muito
preciso, como vc pode notar pelo exemplo acima!). Como fazer para
obter sempre a componente inteira mais aproximada?! A solucédo ¢é
somar 0.5 ao resultado da multiplicacdo por 65536.0!

Se a componente fracionaria for maior ou igual a 0.5 entdo a
soma da componente fracionaria com 0.5 dara valor menor que 2.0 e
maior ou igual a 1.0 (ou seja, a componente inteira dessa soma sera
sempre 1.0). Ao contréario, se a componente fracionaria do resultado
da multiplicacdo por 65536.0 for menor que 0.5 entdo a componente
inteira da soma dessa componente por 0.5 sera sempre 0.0! Entao,
somando o resultado da multiplicacdo com 0.5 podemos ou néo
incrementar a componente 1inteira de acordo com a proximidade do
numero real com o inteiro mais proéximo!

Se a aproximacd@o ndo for feita, o erro gira em torno de 15e-6,
ou seja: 0.000015 (erro a patir da quinta casa decimal!).

A transformacdo de um numero de ponto-flutuante para ponto-fixo
fica entéao:

FixP = (FloatP * 65536.0) + 0.5

FixP = (3.1415... * 65536.0) + 0.5 = 205887.4161 + 0.5
FixP = 205887.9161

FixP = 205887 (ignorando a parte fracionaria!)

FixP = 0003.2439h

A transformacdo contraria (de ponto-fixo para ponto-flutuante) é
menos traumatica, basta dividir o numero de ponto fixo por 65536.0.
Eis algumas macros, em C, para as transformacgdes:

#define INT2FIXED(X) ((long)(x) << 16)

#define FIXED2INT(x) ((x) >> 16)

#define DOUBLE2FIXED(x) (long)(((x) * 65536.0) + 0.5)
#define FIXED2DOUBLE(x) ((double)(x) / 65536.0)

Aritimética de ponto-fixo ¢é recomendavel apenas no caso de
requerimento de velocidade e quando ndo necessitamos de precisdo nos
calculos. O menor numero que podemos armazenar na configuracéo

atual ¢é 1.5259e-5 (1/65536) e 0 maior é 2767.99998,
aproximadamente. NUmeros maiores ou menores que esses ndo sdo
representaveis. Se o0 seu programa pode extrapolar esta faixa, nao
use ponto-fixo, \/e obtera muitos erros de precisao e,

ocasionalmente, talvez até um erro de "Division By Zero".

Atencéo. .. A 1implementacdo dos procedimentos (PROC) acima séo
um pouquinho diferentes para mixagem de cddigo... Os compiladores C
e PASCAL atuais utilizam o par DX:AX para retornar um DWORD, assinm,
no fim de cada PROC e antes do retorno coloque:

shld edx, eax, 16
shr eax, 16

Ou faca melhor ainda: modifique os cddigos!

Eis a minha implementacdo para as rotinas FixedMul e FixedDiv
para mixagem de cédigo com C ou TURBO PASCAL:

/*

** Arquivo de cabecalho FIXED.H
*/

#if !'defined(__FIXED_H_)
#define _ FIXED_T__

/* Tipagem */
typedef long fixed_t;

/* Macros de conversao */

#define INT2FIXED(X) ((fixed_t)(x) << 16)

#define FIXED2INT(x) ((int)((x) >> 16))

#define DOUBLE2FIXED(x) ((fixed_t)(((x) * 65536.0) + 0.5))

#define FIXED2DOUBLE(x) ((double)(x) / 65536.0)
/* Declaracdo das funcgbes */

fixed_t pascal FixedMul(fixed_t, fixed_t);
fixed_t pascal FixedDiv(fixed_t, fixed_t);

#endif

{*** Unit FixedPt para TURBO PASCAL ***}
UNIT FIXEDPT;

{} INTERFACE {}

{*** Tlpagem ***}
TYPE
TFixed = LongInt;

{*** Declaracdo das funcbes ***}
FUNCTION FixedMul(M1, M2 : TFixed) : TFixed;
FUNCTION FixedDiv(D1, D2 : TFixed) : TFixed;

{} IMPLEMENTATION {}

{*** Inclui o arquivo .0BJ compilado do cédigo abaixo ***}
{$L FIXED.OBJ}

{*** Declara funcdes como externas ***}
FUNCTION FixedMul(M1, M2 : TFixed) : TFixed; EXTERN;
FUNCTION FixedDiv(D1, D2 : TFixed) : TFixed; EXTERN;

{*** Fim da Unit... sem inicializagfes! ***}
END.

; FIXED.ASM
; Modulo ASM das rotinas de multiplicacdo e divisao em
; ponto fixo.

; Modelamento de meméria e modo do compilador.
IDEAL

MODEL LARGE, PASCAL

LOCALS

JUMPS

P386 ; Habilita instrucdes do 386

; Declara os procedimentos como publicos
GLOBAL FixedMul : PROC
GLOBAL FixedDiv : PROC

; Inicio do segmento de coédigo.
CODESEG

PROC FixedMul
ARG ml:DWORD, m2:DWORD

mov eax, [m1]
mov ebx, [m2]
imul ebx

shr eax, 16

; Coloca parte fracionaria em AX.

; DX ja contém parte inteira!

ret
ENDP

; Divis&@o em ponto fixo.

; d1 = Dividendo, d2 = Divisor
PROC FixedDiv
ARG d1:DWORD, d2:DWORD
sub cl,cl ; CL = flag
; == 0 - resultado positivo.
; '= 0 - resultado negativo.
mov eax, [d1] ; pega dividendo
or eax, eax ; € negativo?!
jns @@no_chs1 ; nado! entdo ndo troca sinal!
neg eax ; é! entdo troca o sinal e...
inc cl ; incrementa flag.
@@no_chs1:
mov ebx, [d2] ; pega divisor
or ebx, ebx ; € negativo?!
jns @@no_chs2 ; nao! entdo ndo troca sinal!
neg ebx ; é! entdo troca sinal e...
dec cl ; decrementa flag.
@@no_chs2:
sub edx, edx ; Prepara para divisao.
shld edx, eax, 16
shl eax, 16
div ebx ; divisdo de valores positivos...
; ndo precisamos de idiv!
or cl,cl ; flag == 0?
jz @@no_chs3 ; sim! resultado é positivo.
neg eax ; nado! resultado é negativo...
; troca de sinal!
@@no_chs3:

4

; Apenas adequa para o compilador

shld

edx,eax,16 ;
shr eax, 16
ret
ENDP

END

DX:AX contém o DWORD

RBT Curso de Assembly Aula N° 21

Por: Frederico Pissarra

0la!!... Acho que vocé concorda comigo que essa série de textos
ndo estaria completa se eu ndo falasse alguma coisa a respeito de
progrmacdo da placa de video VGA, né?! Acho que nés temos razdo em
pensar assim! :)

Inicialmente comecarei a descrever a placa VGA, depois vem as
descricdes da SVGA e VESA. N&do pretendo gastar "trocentas" horas de
digitacdo e depuracdo de cddigo na descricdo desses padrbes.. quero
apenas dar uma idéia geral do funcionamento desses dispositivos para
gque vocé possa caminhar com as préprias pernas mais tarde...

= Video Graphics Array

0 padrdo VGA é o sucessor dos padrdes EGA e CGA, todos criados
pela IBM... A diferenca béasica do VGA para os outros dois é o
aumento da resolucdo e de cores. Eis uma comparacdo dos modos de
maior resolucdo e cores desses trés padrfes (aqui estdo listados
apenas os modos graficos!):

CGA EGA VGA
Maior resolucéo 640x200 640x350 640x480
Maior numero de 4 16 16
cores (320x200) (640x350) | (640x480)
256
(320x200)

0 padrdo VGA suporta até 256 cores simultanemente no modo de
video 13h (320x200x256). E no modo de mais alta resolugdo suporta o
mesmo numero de cores que a EGA, que sdo apenas 16.

Quanto ao numero de cores, as placas EGA e VGA sao mais

flexiveis que a 1irma mais velha (a CGA). As cores séo
"reprogramaveis", isto é, de uma palette de 256k cores (256 * 1024 =
262144 cores), na VGA, podemos escolher 256... Duma palette de 64
cores podemos wusar 16, na EGA... A VGA é, sem sombra de davidas,
superior!

A forma como podemos selecionar essas cores todas sera mostrada
mais abaixo (Como sempre as coisas boas séo sempre deixadas pra
depois, né?! hehe).

Em tempo: O modo 640x480 (16 cores) sera usado como exemplo nas
préximas listagens dos textos daqui pra frente... O modo grafico de
320x200 com 256 cores serd discutido em outra oportunidade, bem como
o famoso MODE X (modo de video ndo documentado da VGA - e largamente
descrito por Michael Abrash em seus artigos para a revista Dr.
Dobb's).

= Memoria de video

Existe um grande obstidculo com relacdo a modos graficos de

resolucdes altas: A segmentacdo de meméria! Lembre-se que os
processadores Intel enxergam a memdoria como blocos de 64k néo
sequenciados (na verdade, sobrepostos!)... No modo gréafico de

resolucdo 640x480 da VGA (que suporta 16 cores no maximo), suponha
que cada byte da meméria de video armazenasse 2 pixeis (16 cores
poderia equivaler a 4 bits, n&o poderia?!)... Well isso nos da 320
bytes por linha (meio byte por pixel - 640 / 2 = 320!).

Com os 320 bytes por linha e 480 linhas teriamos 153600 bytes
numa tela cheia! Ocupando 3 segmentos da meméria de video (2
segmentos contiguos completos e mais 22528 bytes do terceiro!)...

Puts... 1Imagine a complexidade do algoritmo que escreve apenas um
ponto no video! Seria necessario selecionarmos o segmento do pixel
e o offset... 1isso pra aplicativos graficos de alta performance

seria um desastre!

A IBM resolveu esse tipo de problema criando "planos" de

meméria... Cada plano equivale a um bit de um pixel. Dessa forma,
se em um byte temos oito bits e cada plano armazena 1 bit de 1
pixel... em um byte de cada plano teremos os 8 bits de 8 pixeis.
Algo como: O byte no plano 0 tem os oito bits 0 de oito pixeis...
no plano 1 temos os oito bits 1 de oito pixeis... e assim por
diante. De forma que o circuito da VGA possa "sobrepor" os planos
para formar os quatro bits de um Jdnico pixel... A representacéo

grafica abaixo mostra a sobreposicdo dos planos:

Esses sdo o0s quatro planos da meméria de video. O plano da
frente € o plano 0, incrementando nos planos mais interiores.
Suponha que na posicdo inicial de cada plano tenhamos o0s sequintes
bytes:

Plano 0: 00101001b
Plano 1: 10101101b
Plano 2: 11010111b
Plano 3: 01010106b

Os bits mais significativos de cada plano formam um pixel:
(0110b), os bits seguintes o segundo pixel (0011b), o terceiro
(1100b), e assim por diante até o oitavo pixel (1110b). Como temos
16 cores no modo 640x480, cada pixel tem 4 bits de tamanho.

Com esse esquema biruta temos um espaco de apenas 38400 bytes
sendo usados para cada plano de video... Se cada byte suporta um
bit de cada pixel entdo temos que uma linha tem 80 bytes de tamanho
(640 / 8). Se temos 480 linhas, teremos 38400 bytes por plano.

Tome nota de duas coisas... estamos usando um modo de 16 cores
como exemplo para facilitar o entendimento (os modos de 256 cores
sdo mais complexos!) e esses 38400 bytes em cada plano de bits é um
espaco de meméria que pertence & placa de video e é INACESSiVEL a
CPU!!l!l Apenas a placa de video pode ler e gravar nessa memdria. A
placa VGA (e também a EGA) wusam a meméria RAM do sistema para
saberem quais posicdes de um (ou mais) planos de bits seréo
afetados. 1Isso é assunto para o proximo toépico:

= A meméria do sistema:

0Os adaptadores VGA wusam o0 espaco de "meméria linear" entre
QAOOOOh e OBFFFFh (todo o segmento O0OAQOGh e todo o segmento

OBOOEOh)... Essa memoria é apenas uma &rea de rascunho, j& que a
placa VGA tem meméria proépria... A CPU precisa de uma meméria
fisicamente presente para que possa escrever/ler dados... dai a

existencia desses dois segmentos contiguos de memdéria, mas a VGA néo
0s usa da mesma forma que a CPU!

Citei dois segmentos contiguos... mas ndo existe a limitacdo de
apenas um segmento?! Well... existe... o segmento OBOOGh é usado
apenas nos modos-texto (onde o segmento OB80Gh é usado... 0BOOOh é
para o adaptador monocromatico - MDA)... os modos-graficos wutilizam

0 segmento GAGOOh (a ndo ser aqueles modos graficos compativeis com
a CGA!).

A meméria do sistema é usada como rascunho pela VGA (e pela EGA
também!!)... A VGA colhe as modificagdes feitas na memdria do
sistema e transfere para a meméria de video. A forma com que isso é
feito depende do modo com que programamos a placa de video para
fazé-lo... podemos modificar um plano de bits por vez ou véarios
planos, um bit por vez, varios bits de uma vez, etc. Na realidade,
dependendo do modo com que os dados sdo enviados para a placa VGA
ndo precisamos nem ao menos saber O QUE estamos escrevendo na
memoria do sistema, a VGA toma conta de ajustar a meméria de video
por si s6, wusando apenas o endereco fornecido pela CPU para saber
ONDE deve fazer a modificacdao!

= Selecionando os planos de bits...

Em todos os modos de escrita precisamos selecionar os planos de
bits que serdo afetados... 1Isso é feito através de um registrador
da placa VGA: MapMask... Porém, antes de sairmos futucando tudo
quanto é endereco de I/0 da placa VGA precisamos saber COMO devemos
uséa-los!

A maioria dos registradores da placa VGA estdo disponiveis da
seguinte maneira: Primeiro informamos a placa qual é o registrador
que queremos acessar e depois informamos o dado a ser escrito ou
lido... A técnica é a seguinte: escrevemos num endereco de I/0 o
nimero do registrador... no endereco seguinte o dado pode ser lido

ou escrito...

No caso de MapMask, este registrador ¢é o numero 2 do CIRCUITO
SEQUENCIADOR da placa VGA. 0 circuito sequenciador pode ser
acessado pelos enderecos de I/0 3C4h e 3C5h (3C4h contera o numero
do registro e 3C5h o dado!). Eis a estrutura do registro MapMask:

76543210

?21?1?|?
L—— plano 0
plano 1
plano 2
plano 3
De acordo com o desenho acima... o0s quatro bits inferiores

informam a placa VGA qual dos planos serda modificado. Lembre-se que
cada plano tem um bit de um pixel (sendo o plano O o proprietéario do
bit menos significativo). Vamos a nossa primeira rotina:

; VGA1l.ASM

; Compile com:

’

; TASM vgal

; TLINK /x/t vgal

4

ideal

model tiny

locals

jumps

codeseg

org 100h

start:
mov ax,12h ; Poe no modo 640x480
int 10h
mov ax, OAOO0h ; Faz ES = 0AOO00Gh
mov es, ax
sub bx, bx ; BX sera o offset!
mov dx, 03C4h ; Aponta para o registro
mov al,2 ; ""MapMask"
out dx,al
inc dx ; Incrementa endereco de I/0
mov al, 0001b ; Ajusta para o plano 0
out dx, al
mov [byte es:bx], OFFh ; Escreve OFFh
mov al, 0100b ; Ajusta para o plano 2
out dx,al

mov [byte es:bx], OFFh ; Escreve OFFh
sub ah, ah ; Espera uma tecla!
int 16h ; ... sendo ndo tem graca!!! :)
mov ax, 3 ; Volta p/ modo texto 80x25
int 10h
int 20h ; Fim do prog
end start

Depois de compilar e rodar o VGA1.COM vocé vai ver uma pequena
linha magenta no canto superior esquerdo do video... Se vocé quiser
que apenas o pixel em (0,0) seja aceso, entdo mude o valor OFFh nas
instrugBes "mov [byte es:bx],0FFh" para 80h. 0 motivo para isso é
gue cada byte tem apenas um bit de wum pixel, isto é, cada bit do
byte equivale a um bit do pixel... necessitamos alterar os quatro
planos de bits para setarmos os quatro bits de cada pixel (quatro
bits nos ddo 16 combinacdes)... assim, se um byte tem oito bits, o
primeiro byte dos quatro planos de bits tem os oito pixeis iniciais,
sendo o0 bit mais significativo do primeiro byte de cada plano o
primeiro pixel.

Deu pra notar que apenas modificamos os planos @ e 2, né?!
Notamos também que desta maneira n&o temos como alterarar um Unico
pixel... sempre alteraremos os oito pixels!! Mas, nao se
preocupe... existem outros recursos na placa VGA... Entendendo o
esquema de "planos de bits" ja esta bom por enquando...

Até a proxima. ..

RBT Curso de Assembly Aula N° 22

Por: Frederico Pissarra

Alguma vez aconteceu de vocé ter aquela rotina quase concluida e
quando foi testd-la viu que estava faltando alguma coisa?! Bem...
se ndo aconteceu vocé é um sortudo... Quando eu estava comecando a
entender o funcionamento da placa VGA me dispus a construir rotinas
basicas de tracagem de 1linhas horizontais e verticais... porénm,
quando tinha algum bitmap atréas da linha acontecia uma desgraca!!!
Parte do bitmap sumia ou era substituido por uma sujeirinha chata!

Obviamente eu ainda ndo tinha dominado o funcionamento da
placa... por isso, vamos continuar com os nossos estudos...

= A mascara de bits e os LATCHES da VGA.

Existe uma maneira de n&do alterarmos bits indesejaveis em um
byte de cada plano... Suponha que queiramos modificar apenas o bit
mais significativo de um byte nos planos de bits, deixando o
restante exatamente como estavam antes!

Well... 1Isso pode ser feito de duas formas: Primeiro lemos o
byte de um plano, realizamos um OR ou um AND com esse byte e o byte
com o bit a ser alterado (zerando-o ou setando-o de acordo com a

modificacdo que faremos... veja as instrugbes AND e OR num dos
textos iniciais do curso de ASM para ter um exemplo de como 1isso
pode ser feito!)... depois da operacdo ldgica, escrevemos o byte na
mesma posicdo... Essa é a maneira mais dispendiosa!

A placa VGA permite que criemos uma mascara de bits para
podermos alterar apenas aqueles bits desejados... Isso é feito pelo
registrador BitMask. Mas, antes temos que ler o byte inteiro...
hummm... acontece que existe um registrador intermediario, interno,
que retém o ultimo byte lido de um plano de bits... esse registrador
é conhecido como LATCH.

Basta ler um byte da memdria do sistema que os bytes dos quatro

planos de bits vdo para seus LATCHES... Depois precisamos mascarar
0os bits que ndo queremos modificar no registrador BitMask para so
entdo escrever na meméria do sistema (no plano de bits!)... Néo

esquecendo de setar os planos de bits que queremos alterar via
MapMask, como visto no Ultimo texto!

0 funcionamento dos latches em conjunto com BitMask é o
seguinte: Uma vez carregados os latches, apenas os bits ZERADOS de
BitMask serdo copiados de volta para os planos de bits selecionados
por MapMask. Em contrapartida, os bits SETADOS em BitMask
correspondem aos bits vindos da meméria do sistema, que séo

fornecidos pela CPU. Dessa maneira a nossa rotina ndo tem que
propriamente ler o conteldo de um plano de bits (alias, o que for
lido pela CPU pode muito bem ser ignorado!)... ndo necessitamos nem

ao menos efetuar operacdes 1ldégicas para setar ou resetar um
determinado bit do byte que sera escrito num plano de bits!

Vimos no Gltimo texto que o registro MapMask faz parte do

circuito SEQUENCIADOR da VGA. O registro BitMask estéd localizado em
outro circuito. Mais exatamente no controlador grafico (Graphics
Controller - que chamaremos de GC)... O funcionamento é o mesmo do
que o circuito sequenciador, em termos de enderecos de I/0, citado
no Ultimo texto: Primeiro devemos informar o numero do registro e
depois o0 valor. O GC pode ser acessado a partir do endereco de I/0
O3CEh e 0 numero do registro BitMask é 8.

Eis nosso segundo exemplo:

; VGA2.ASM
; Compile com:
; TASM vgaz2
; TLINK /x/t vga2
ideal
model tiny
locals
jumps
codeseg
org 100h
start:
mov ax,12h ; Poe no modo 640x480
int 10h
mov ax, 0A006h ; Faz ES = 0A0QGGh
mov es, ax
sub bx, bx ; BX sera o offset!
mov dx, @3C4h ; Seleciona planos 0 e 2...
mov ax, 0502h ; idem a fazer: mov al,2
; mov ah,0101b
out dx, ax
mov dx, @3CEh ; Mascara todos os bits,
mov ax, 8008h ; exceto o bit 7
out dx, ax
mov al, [byte es:bx] ; carrega os latches da VGA
; note que AL n&do nos
; interessal!!!
mov [byte es:bx], OFFh ; Escreve OFFh
sub ah, ah ; Espera uma tecla!
int 16h ; ... sendo ndo tem graca!!! :)
mov ax, 3 ; Volta p/ modo texto 80x25
int 16h
int 20h ; Fim do prog
end start

Temos algumas novidades aqui... Primeiro: é possivel escrever
0 numero de um registro e o dado quase que ao mesmo tempo... basta
usar a instruncé@o OUT DX,AX - recorra a textos anteriores para ver o
funcionamento dessa instrucéo!. Segundo: mesmo escrevendo OFFh
(todos os bits setados) na meméria do sistema, apenas o bit que néo
esta mascarado sera modificado, gracas ao BitMask!! Terceiro: Mais
de um plano de bits pode ser alterado ao mesmo tempo! Note que
nesse co6digo escrevemos na memdéria de video apenas uma vez e 0sS
planos 0 e 2 foram alterados (continua a cor MAGENTA, nao?!).

= Problemas a vista!

Ok... aparentemente a coisa funciona bem... dai eu faco uma
simples pergunta: 0 que aconteceria se o0 ponto em (0,0) estivesse
inicialmente "branco" e usassemos a rotina acima?!

Hummmm... Se o ponto é branco, a cor ¢é 15... 15 é 1111b em
binario, ou seja, todos os planos de bits teriam o bit 7 do primeiro
byte setados... A rotina acima "seta" os bits 7 do primeiro byte

dos planos @ e 2... assim a cor CONTINUARIA branca!! MAS COMO SOU
TEIMOSO, EU QUERO MAGENTA!!!

A solucdo seria colocar as seguintes linhas antes da instrucéo
"sub ah,ah" na listagem acima:

mov dx, @3C4h ; Seleciona os planos 1 e 3

mov ax, 0A02h

out dx, ax

mov [byte es:bx],0 ; escreve @ nos planos 1 e 3

Precisamos zerar os bits 7 dos planos 1 e 3... Note que nas
linhas acima ndo carreguei os latches da VGA através de leitura...
aliads... ndo carreguei de forma alguma. Ndo preciso fazer isso os
latches dos planos 1 e 3 ndo foram alterados desde a sua U(ltima
leitura... repare que nado ‘'"desmascarei" os bits no registro
BitMask... dai ndo ter a necessidade de mascara-los de novo... sO

preciso escrever 0 nos planos 1 e 3 para que o bit 7 seja alterado.

Puts... que mado-de-obral!!... Felizmente existem meios mais

simples de fazer 1isso tudo... Ahhhhhh, mas é claro que isso fica
pra um proximo texto! :))

RBT Curso de Assembly Aula N° 23

Por: Frederico Pissarra

Confesso a todos vocés que a experiéncia que venho tendo com
relacdo a programacdo da placa VGA comecou com a leitura de artigos
e de um livro de wum camarada chamado Michael Abrash... Gostaria
muito de conseguir outros livros desse sujeito!! Alias, se puderem
colocar as mdos num livrdo chamado "Zen of Graphics Programming",
garanto que ndo havera arrependimentos! E um excelente livro com
MUITOS macetes, rotinas e explicacdes sobre a VGA... Tudo isso com
bom humor!!! :)

Outra boa aquisicgdo, pelo menos com relacdo ao capitulo 10, é o
livro "Guia do Programador para as placas EGA e VGA" da editora
CIENCIA MODERNA (o autor é Richard E. Ferraro). Explicitei o
capitulo 10 porque acho que esse livro s6 nado é tdo bom devido a
falhas de traducdo (coisa que acontece com quase todos os 1livros
traduzidos no Brasil!)... 0 capitulo 10 é t&o somente uma
referéncia (enorme e confusa, mas quebra bem o galho) a todos os
registradores da VGA. Esse é um dos livros que adoraria poder ter o
original, em inglés!

Onde paramos?!

Ahhh... sim... até aqui vimos o modo de escrita '"normal" da
placa VGA. Esse modo de escrita é o usado pela BIOS e ¢é conhecido
como "modo de escrita 0". Antes de passarmos pra outros modos de
escrita vale a pena ver 0 funcionamento de outros dois
registradores: o "Enable Set/Reset" e o0 "Set/Reset". Esses
registros, como vocé vai ver, facilita muito o trabalho de escrita
nos planos de bits.

= Ligando e desligando bits...

Na listagem do text 22 vimos que é possivel a escrita em mais de
um plano de bits ao mesmo tempo (basta habilitar em MapMask). Vimos
também que os planos de bits nd8o habilitados para escrita via
MapMask ndo sdo automaticamente zerados... lembra-se do caso do
pixel branco que queriamos transformar em magenta?!

Com tudo isso, tinhamos que fazer pelo menos 3 acessos a meméria
do sistema: Uma leitura para carregar os latches, uma escrita para
setar bits nos planos selecionados, e mais uma escrita para zerar os
bits dos outros planos... 1Isso sem contar com os registradores que
teremos que atualizar: MapMask e BitMask. Surpreendentemente a
instrucdo OUT € uma das que mais consomem ciclos de maquina da CPU
(especialmente nos 386s e 486s! Veja no seu HELP_PC).

Na tentativa de reduzir os acessos a memdéria do sistema (e
indiretamenta aos planos de bits!), lancaremos mdo dos registradores
"Enable Set/Reset" e "Set/Reset". Eis a descricéo deles:

* REGISTRO ENABLE SET/RESET

76543210

L—— S/R bit
S/R bit

S/R bit
S/R bit

?20?(?(?

WNE O

% REGISTRO SET/RESET

76543210

L—— plano
plano

plano
plano

?2(?(?|?

WNREO

0 registrador "Enable Set/Reset" informa a placa VGA quais bits
do registrador "Set/Reset" vao ser transferidos para os planos de
bits. Note que cada bit de "Set/Reset" estéd associado a um plano de
bits! O0s bits ndo habilitados em "Enable Set/Reset" vir&o da CPU ou
dos latches, dependendo do conteudo de BitMask - como vimos no
exemplo do texto 22.

Ndo sei se vocé percebeu, mas podemos agora escrever quatro bits
diferentes nos quatro planos de bits ao mesmo tempo... Se setarmos
0os quatro bits de "Enable Set/Reset", os quatro bits em "Set/Reset"
serdo transferidos para a meméria de video. Nesse caso o que a CPU
enviar para a meméria do sistema serd ignorado (j& que é "Set/Reset"
que esta fornecendo os dados!).

Os registradores MapMask e BitMask continuam funcionando como
antes... Se ndo habilitarmos um ou mais planos de bits em MapMask,
este(s) plano(s) n&o sera(do) atualizado(s)! Note que "Enable
Set/Reset" diz ao circuito da placa VGA que deve ler o0s respectivos
bits de "Set/Reset" e coloca-los nos respectivos planos de bits...
mas, MapMask pode ou ndo permitir essa transferéncia!!! Quanto ao
registrador BitMask, vai bem obrigado (veja discuss&@o sobre ele no
texto anterior).

Hummm. .. virou bagunca! Agora podemos ter dados vindos de trés
fontes: da CPU (via meméria do sistema), dos latches, e do
registrador Set/Reset. Bem... podemos até usar essa bagunca em

nosso favor!

"Enable Set/Reset" e "Set/Reset" pertencem ao mesmo circuito de
BitMask: o controlador grafico (GC). S6 que o 1indice (que é o
numero do registro no circuito!) de "Set/Reset" é 0 e de "Enable
Set/Reset" é 1.

Vamos a um exemplo com esses dois registradores:

l4
14
4
.
l4
l4

ideal

model tiny

locals

jumps
codeseg

org 100h

start:
mov
int

mov
mov
sub

mov
mov
out

mov
mov
out
mov
out
mov
out

mov

mov

sub
int

mov
int

int

end start

VGA3.ASM
Compile com:

TASM vga3
TLINK /x/t vga3

ax,12h
10h

ax, 0A0O0h
es, ax
bx, bx

dx, 03C4h
ax, OF02h
dx, ax

dx, ®3CEh
ax, 8008h
dx, ax
ax, 0500h
dx, ax
ax, OF01h
dx, ax

al, [byte es:

[byte es:bx],al

ah, ah
16h

ax,3
16h

20h

4

l4

bx]

l4

l4

4

Poe no mo

Faz ES =

BX sera o

MapMask

BitMask
Set/Reset

Enable Se

Ns N® N= N= Ns N= N=

Ns Ns N= N N=

do 640x480

OAGOOh

offset!

1111b

10000000b

= 0101b

t/Reset = 1111b

carrega os latches da VGA

note que AL ndo nos
interessa!!!

Isso é necessario pqg vamos
alterar apenas o bit 7. Os
demais sdo fornecidos pelos

latches.

Escreve qualquer coisa...

AL aqui também n&o nos
interessa, ja que Set/Reset
é quem manda os dados para

os planos de bits.

Espera uma tecla!

senao

; Volta p/

Fim do pr

ndo tem graca!!!

modo texto 80x25

0g

)

Explicando a listagem acima: O0s quatro planos s&o habilitados

em MapMask... depois habilitamos somente o bit 7 em BitMask, seguido
pela habilitacéo dos quatro bits de "Set/Reset" em "Enable
Set/Reset". Uma vez que o0s quatro planos estdo habilitados (por

MapMask) e que os quatro bits de "Set/Reset" também estdo (via
"Enable Set/Reset"), colocamos em "Set/Reset" os quatro bits que
gqueremos que sejam escritos nos planos: 0101b (ou O5h). Pois
bem... precisamos apenas carregar os latches e depois escrever na
memoria do sistema.

Tudo bem, vc diz, mas qual é a grande vantagem?! Ora, ora...
temos condicdes de alterar os quatro planos de bits ao mesmo tempo!!
E, melhor ainda, estamos em condigcdo de setar até oito pixeis ao

mesmo tempo!!!! Experimente trocar a linha:
mov ax, 8008h ; BitMask = 10000000b
por:
mov ax, OFFO8h ; BitMask = 11111111b

Vocé vera oito pixeis magenta com uma Unica escrita na memoéria
do sistema!!

Outra grande vantagem ¢é o ganho de velocidade: Na listagem
acima os dados que vdo ser colocados nos planos de bits ndo séo
fornecidos diretamente pela CPU, mas sim por "Set/Reset" e pelos
latches. Assim, a placa VGA ndo se interessa pelo conteldo de AL
que foi escrito na meméria do sistema e ndo adiciona WAIT STATES, ja
que esse dado ndo vai para a meméria de video (fica sé na meméria do
sistema!!).

E um grande avanco, né?! Well... proximos avan¢cos nos proximos
textos.

RBT Curso de Assembly Aula N° 24

Por: Frederico Pissarra

Até agora vimos o0s registradores MapMask, BitMask, "Enable
Set/Reset" e Set/Reset. Vimos também que MapMask permite ou néo

mudancas nos quatro planos de bits idependentemente. BitMask
mascara o0s bits ndo desejaveis (e esses sao lidos dos latches quando
escrevemos na meméria). Ainda por <cima, vimos que é possivel

atualizar os quatro planos de bits ao mesmo tempo com bits
diferentes usando "Enable Set/Reset" e Set/Reset. Isso tudo usando
o modo de escrita 0!

= Modo de escrita 1

0 modo de escrita 1 1lida somente com os latches da placa VGA.
Com esse modo podemos copiar o conteldo dos quatro planos de bits de
uma posicdo para outra com uma Unica instruc@o em assembly!

Como ja vimos, os latches dos quatro planos sdo carregados
sempre que fazemos uma leitura na memdéria do sistema (em todos os
modos de escrital!). No modo 1 isso também vale. SO que nesse modo
ndo é possivel escrever nada nos planos de bits!! Simplesmente,
quanto mandamos escrever numa determinada posicdo da memdria do
sistema, os latches ¢é que atualizardo essa posicdo. No modo 1 os
registros Set/Reset, "Enable Set/Reset" e BitMask ndo funcionam para
nada. Assim, depois de setado o modo 1, podemos usar:

REP MOVSB

Para copiarmos bytes dos quatro planos de video de uma posicédo
da tela para outra. E RAPIDO! S6 que tem um pequeno problema:
Podemos copiar BYTES e ndo pixeis individuais! Lembre-se que um
byte contém oito pixeis (com cada bit de um pixel em um plano de
bits!). Se sua intenc&@o é copiar um bloco inteiro, porém alinhado
por BYTE, entdo o modo 1 é a escolha mais sensata. Caso contrario,
use outro modo de escrita (o modo 0, por exemplo!).

Ahhh... podemos conseguir o mesmo efeito do modo de escrita 1 no
modo de escrita @! Basta zerarmos todos os bits de BitMask! Pense
bem: Se BitMask estd completamente zerado, entdo os dados viréo
apenas dos 1latches! 0O que nos deixa com um modo de escrita
obsoleto, ja que podemos fazer o mesmo trabalho no modo 0! :)

= 0 registrador MODE

Para ajustar o modo de escrita precisamos de um registrador. O
registrador MODE é descrito abaixo:

76543210

? ?
L—t————— Modo de escrita
Modo de leitura
0dd/Even
Deslocamento

0O Unico campo que nos interessa no momento ¢é o "Modo de
escrita". Por isso, para modificar o modo, precisaremos ler o
registro MODE, setar o modo de escrita, e depois reescrevé-lo...
para que ndo facamos mudancas nos demais bits. O0s modos de escrita
validos sdo os citados anteriormente (repare que esse campo tem 2
bits de tamanho!).

0 registrador MODE faz parte do circuito GC (o mesmo de
BitMask, "Enable Set/Reset" e Set/Reset) da placa VGA, seu indice é
5.

Well... ja que o modo 1 ¢€é obsoleto, vou colocar aqui alguns
macros para facilitar o entendimento dos proéximos coédigos-fonte, ok?

; VGA.INC
; Macros para VGA!
; Todos os macros alteram dx e ax

; Macro: Ajusta o modo de escrita

macro SetWriteMode mode
ifdifi <mode>, <ah>
mov ah, mode
endif
mov dx, 3CEh
mov al,5
out dx,al
inc dx
in al, dx
and ax,1111111106b
or al, ah
out dx,al
endm

; Macro: Habilita/Mascara os planos de video
macro MapMask plane
ifdifi <plane>,<ah>

mov ah, plane
endif
mov al,2
mov dx, 3C4h
out dx, ax

endm

; Macro: Habilita os bits
macro BitMask bit
ifdifi <bit>,<ah>

mov ah, bit
endif
mov al, 8
mov dx, 3CEh
out dx, ax

endm

; Macro: Altera "Enable Set/Reset"

macro EnableSetReset bitmsk

ifdifi <bitmsk>, <ah>
mov ah, bitmsk

endif
mov al, 1
mov dx, 3CEh
out dx, ax

endm

; Macro: Ajusta Set/Reset
macro SetReset value
ifdifi <value>, <ah>

mov ah, value
endif
sub al,al ; altera tb os flags..
mov dx, 3CEh
out dx, ax

endm

RBT Curso de Assembly Aula N° 25

Por: Frederico Pissarra

O modo de escrita 1 ndo ¢é tao util, como vimos no ultimo
texto... A plca VGA possui algumas redundancias que podem parecer
desnessesarias a primeira vista, como por exemplo o modo de escrita
3. Nesse modo podemos despresar o registrador "Enable Set/Reset" e
usar "Set/Reset" para ajustar os bits dos quatro planos de video.

= Modo de escrita 3

Well... No modo @ vimos como atualizar os quatro planos de
bits de uma s6 vez... 1Isso é feito setando o registrador "Enable
Set/Reset" e "Set/Reset"... wusando também MapMask e BitMask para

habilitarmos os planos e os bits desejados, respectivamente.
Acontece que no modo O podemos ter uma mistura de dados vindos da
CPU, dos latches e do registro Set/Reset... a mistura pode ser téo
confusa que podemos ter a CPU atualizando um plano e Set/Reset
outro. E, sem sombra de divida, um recurso interessante e bastante
atil... mas se ndo tomarmos cuidado pode ser uma catastrofe, em
termos visuais!

0 modo de escrita 3 trabalha da mesma forma que o modo 0 sO que
"seta" automaticamente os quatro bits de "Enable Set/Reset". Isto
é, a CPU ndo escreve nada nos planos de bits... isso fica sob
responsabilidade do registrador "Set/Reset". 0 que a CPU escreve na
memoria so sistema sofre uma operacdo 1ldégica AND com o conteudo
atual de BitMask... 0 resultado é usado como se fosse o BitMask!
(Para facilitar as coisas... se BitMask for 11111111b e a CPU
escrever 01100011b, entdo o "novo" BitMask sera 01100011b, sem que o
registrador BitMask seja afetado!!)

Com esse modo de escrita descartamos a necessidade de ajustar
"Enable Set/Reset", eliminando a confusdo que pode ser causada no
modo ©0... descartamos a atualizacdo de BitMask, que pode feita
indiretamente pela CPU... Mas, infelizmente n&o descartamos a
necessidade de leitura da meméria do sistema para carga dos latches
e nem mesmo a necessidade de habilitarmos os planos de bits em
MapMask! Se MapMask estiver =zerado nenhum plano de bit sera
atualizado, 1lembre-se sempre disso!!! 1Isso é valido para TODOS os
modos de escrital!

Eis um exemplo pratico do uso do modo de escrita 3... Uma
rotina que traca uma linha horizontal:

ideal

model small,c
locals

jumps

p386

; inclui os macros definidos no Ultimo texto!
include "VGA.INC"

SCREEN_SEGMENT equ GA00OGh

; Tamanho de uma linha... (modo 640x480)

LINE_SIZE equ 80

; Coordenadas maximas...
MAX_X_POS equ 639
MAX_Y_POS equ 479

global grHorizlLine:proc
global grVertLine:proc

global setGraphMode:proc
global setTextMode:proc

codeseg

;*** DESENHA LINHA HORIZONTAL ***

proc grHorizLine

arg left:word, right:word, y:word, color:word
local bitmaskl:byte, bitmask2:byte

uses si, di

; Verifica se a coordenada Y é valida...

mov ax, [v]

or ax, ax

js @@grHorizLineExit

cmp ax, MAX_Y_POS

ja @@grHorizLineExit

; Verifica validade das coordenadas "left" e "right"...
mov ax, [left]

cmp ax, [right]

jb @@noSwap

; Troca "left" por "right"
; se "right" for menor que "left".
xchg ax, [left]

mov [right], ax
@@noSwap:
; Verifica a validade das coordenadas "left" e "right"
cmp ax, MAX_X_POS ; "left" é valido?
ja @@grHorizLineExit
or [right],0 ; "'right" é valido?
js @@grHorizLineExit

WriteMode 3 ; Ajusta no modo de escrita 3.

BitMask OFFh ; BitMask totalmente setado!
MapMask 1111b ; Habilita todos os quatro planos

; de bits.
SetReset <[byte color]> ; Ajusta a cor desejada...

mov ax, SCREEN_SEGMENT
mov es, ax ; ES = segmento de video.

; Calcula os offsets das colunas...

mov si, [left]

mov di, [right]

shr si, 3 ; si = offset da coluna 'left'
shr di, 3 ; di = offset da coluna 'right'
; Calcula o offset da linha 'y'

mov bx, [vy]

mov ax, LINE_SIZE

mul bx

mov bx, ax ; BX contém o offset da linha.

; Pré-calcula a mascara da coluna 'left'

mov cx, [left]

mov ch,cl

and ch,111b

mov cl,8

sub cl,ch

mov ah, OFFh

shl ah,cl

not ah

mov [bitmask1l], ah

; pré-calcula a mascara da coluna 'right'

mov cx, [right]
and cl,111b

inc cl

mov ah, OFFh

shr ah,cl

not ah

mov [bitmask2], ah

; Verifica se apenas um byte sera atualizado.
cmp si,di

@@MiddleDraw:

jz @@0neByte
mov ah, [bitmask1]
xchg [es:bx+si],ah ; Escreve na meméria da video...
; . XCHG primeiro 1lé o que
; estd no operando destino,
; depois efetua a troca.
; Com isso economizamos um MOV!
inc si
cmp si,di
je @@doMask?2
mov [byte es:bx+si],0ffh ; Linha cheia. ..

carregar os latches

4
; Nao precisamos
; pq todos os bits

inc si

cmp si,di

jne @@mMiddleDraw
@@doMask2:

mov ah, [bitmask2]

xchg [es:bx+si], ah

jmp @@HorizLineEnd
@@0neByte:

and ah, [bitmask1]

xchg [es:bx+si], ah
@@HorizLineEnd:

WriteMode 0

Ns Ns N= N= N.

; serdo atualizados!

; Escreve na memdria de video

Poe no modo © de novo...
Necessario somente se essa
rotina for usada em conjunto
com as rotinas da BIOS ou de
seu compilados (p.ex: BGIs!).

@@grHorizLineExit:
ret
endp
;7 *** DESENHA LINHA VERTICAL ***
proc grVertLine
arg x:word, top:word, bottom:word, color:byte
uses si, di
; Verifica se X esta na faixa
mov ax, [x]
or ax, ax ; X < 07
js @@grVertLineExit
cmp ax, MAX_X_POS ; X > 639?
ja @@grVertLineExit
; Verifica se precisa fazer swap
mov ax, [top]
cmp ax, [bottom]
jb @@noSwap
xchg ax, [bottom]
mov [top], ax
@@noSwap:

; Verifica se as coordenadas

"Y" estdo dentro da faixa.

cmp ax, MAX_Y_POS

ja @@grVertLineExit
cmp [bottom], 0

js @@grVertLineExit
mov ax, SCREEN_SEGMENT
mov es, ax

WriteMode 3
BitMask OFFh
MapMask OFh

SetReset <[byte color]>

mov si, [top]
mov ax, LINE_SIZE
mul si
mov bx, ax ; BX contém o offset da linha
mov di, [x]
mov cx,di
shr di,3 ; DI contém o offset da coluna
and cl,111b
mov ah, 10000000b
shr ah,cl
@@SetPixellLoop:
mov cl,ah
xchg [es:bx+di], cl
add bx, LINE_SIZE
inc si
cmp si, [bottom]
jbe @@SetPixellLoop

WriteMode 0

@@grVertLineExit:
ret
endp

proc setGraphMode
mov ax,12h
int 16h
ret

endp

proc setTextMode
mov ax, 3
int 16h
ret

endp

end

Ndo sei se percebeu a engenhosidade dessa pequena rotina... Ela
pré-calcula os bitmasks do inicio e do fim da linha... Se a linha
estéd contida somente em um byte entdo fazemos um AND com os dois
bitmasks pré-calculados pra obter o bitmask necessario para
atualizar um Jdnico byte... Suponha que queiramos tracar uma linha
de (2,0) até (6,0). Eis os bitmasks:

BitMask1l = 00111111b ; BitMask do inicio da linha
BitMask2 = 111111160b ; BitMask do fim da linha
BitMask3 = 0011111060b ; BitMaskl AND BitMask2

Ok... E se a linha ocupar 2 bytes?! Por exemplo, de (2,0) até
(11,0)... O ponto (2,0) estd, com certeza, no primeiro byte... mas
0o ponto (11,0) ndo (ja que um byte suporta apenas 8 pixeis!). Entéo
calculados os dois bitmasks:

BitMask1l
BitMask2

00111111b ; BitMask do inicio da linha
111100060b ; BitMask do fim da linha

Dai escrevemos o primeiro byte com o bitmaskl e o segundo com o
bitmask2. Se a linha ocupar mais de 2 bytes o processo é o mesmo,
s6 que os bytes intermediarios terdo bitmasks totalmente setados
(n@o necessitando, neste caso, carregar os latches!).

Na mesma listagem temos a rotina de tracagem de 1linhas
verticais... dé uma olhada nela. E bem mais simples que grHorizlLine!

No préoximo texto: O modo de escrita 2! E depois, os modos de
256 cores! (finalmente, né?!)

RBT Curso de Assembly Aula N° 26

Por: Frederico Pissarra

Vistos os trés primeiros modos de escrita da placa VGA, nos
resta apenas o modo 2. Esse modo ¢é muito util para escrita de
bitmaps nos modos de video de 16 cores... Ele trabalha basicamente
como o registro Set/Reset, sem que tenhamos que manusear esse
registro explicitamente.

= 0 modo de escrita 2

Uma vez setado, o modo de escrita 2 habilita todos os quatro
bits de "Enable Set/Reset", da mesma forma que o modo de escrita 3.
No entanto, diferente do modo de escrita 3, o registro Set/Reset néo
precisa ser ajustado com a "cor" desejada. Neste modo o registro
Set/Reset é setado com os quatro bits menos significativos enviados
pela CPU & memdria do sistema. Precisaremos mascarar o0s bits néo
desejados em BitMask, bem como ajustar os planos de bits desejados
em MapMask.

Repare na forca deste modo de video... poderemos atualizar
pixels com a "cor" que quisermos sem usarmos Set/Reset diretamente,
e sem termos que setar os bits de "Enable Set/Reset". Mas, teremos
que ajustar BitMask para ndo setarmos todos os oito pixels no byte
que estamos escrevendo dos planos de bits... Eis um exemplo do modo
de escrita 2:

ideal
model tiny
locals
jumps

include "vga.inc"

LINE_LENGTH equ 80
codeseg
org 1006h
start:
mov ax,12h ; Ajusta modo de video 640x480x16
int 10h
WriteMode 2 ; modo de escrita 2
MapMask 1111b ; todos os planos de bits
mov ax, 0A006h
mov es, ax ; ES = segmento de video
sub di,di ; DI = offset
sub bl, bl ; usaremos BL p/ contar as linhas.
mov ah,10000000b ; ah = bitmask inicial
mov cl,10006b ; CL = cor inicial
@@1:
BitMask ah
mov al,[es:di] ; carrega latches
mov [es:di],cl ; escreve nos planos
ror ah,1 ; rotaciona bitmask
inc cl ; préxima cor
cmp cl, 10006b ; ops... ultrapassou?!
jb @@1 ; ndo... entdo permanece no loop.
mov cl, 1000b ; ajusta p/ cor inicial.
add di, LINE_LENGTH ; proxima linha
inc bl ; incrementa contador de linhas
cmp bl,8 ; chegou na linha 8?
jb @@1 ; ndo... continua no loop.
sub ah, ah ; espera tecla, sendo ndo tem graca!
int 16h
mov ax, 3 ; volta ao modo texto...
int 16h
int 20h ; fim do programa.
end start

Esse modo parece mais facil que os demais, ndo?! Aparentemente

é... mas tenha em mente que os outros modos de escrita também
suas vantagens.

= E 0os modos de leitura?!

tém

Na grande maioria das vezes ndo é vantajoso lermos os dados que
estdo nos planos de bits... 1Isso porque a meméria de video é mais
lenta que a memdria do sistema (mesmo a meméria do sistema associada
a placa VGA é mais lenta que o resto da mem6éria do seu PC... por
causa dos WAIT STATES que a placa VGA adiciona para ndo se perder -

a velocidade da CPU é maior que a do circuito de video!).

Para encerrarmos os modos de 16 cores é interessante vermos
alguma coisa sobre o modo de 1leitura 0, que ¢é o modo default da
placa VGA.

No modo de leitura @ devemos ler um plano de bits por vez... ndo
é possivel ler mais que um plano ao mesmo tempo... e ainda, MapMask
ndo é responsavel pela habilitacdo dos planos de bits. Nesse caso a
leitura é feita através de uma ramificacdo do circuito de video... a
escrita é feita por outra. 0 registrador BitMask também ndo tem
nenhum efeito na leitura. Por isso a selecdo dos bits fica por sua
conta (através de instrugfes AND).

A selecdo do plano de bits que serid lido é feito pelo
registrador ReadMap que é descrito abaixo:

% Registrador READMAP

76543210

?2(?(?(?(?]?

L1l Selecdo do plano de bits

ReadMap também faz parte do circuito GC... Ent&o é acessivel
via enderecos de I/0 3CEh e 3CFh, da mesma forma que BitMask e o
registro de MODE, s6 que seu indice é 4.

Uma nota importante é a de que, embora a leitura seja feita por
uma ramificacdo diferente (por isso a existéncia de ReadMap), quando
fazemos uma leitura dos planos de bits, os latches séo
automaticamente carregados... e o0s latches pertencem a ramificacéo
do circuito de escrita (somente os latches dos planos selecionados
por MapMask sdo carregados, lembra?!).

E zé fini... pelo menos até o proximo texto! :)

