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Prefácio

Já fazem 20 anos desde a primeira publicação dessa série de artigos que foi chamado de “Curso”, na 
RBT. Eu tinha 25 anos de idade, tinha um PC com processador 286 e, quando adquiri um 386DX 
40MHz, escrevi sobre os registradores e novas instruções para 386. Estava fazendo experimentos com 
o TURBO ASSEMBLER e com o assembler in-line do PASCAL e do Borland C++ 3.1 (que era o meu 
IDE preferido, na época). De lá para cá, muita coisa mudou:

• Processadores de 16 bits estão limitados aos microcontroladores. Há quase uma década não 
ouço falar do 8086 ou o antigo 286;

• Com o advento da moderna arquiteura x86-64 o uso de registradores de segmento (ou 
“seletores”, como são chamados desde o 386) tornou-se obsoleto – pelo menos à nível de 
aplicação;

• Os compiladores C/C++ tornaram-se tão poderosos que desenvolver diretamente em assembly é 
raramente praticado;

• As modernas placas de vídeo e os sistemas operacionais não possibilitam mais o acesso direto à 
memória de vídeo e ao chipset. Tudo tem que ser feito por bibliotecas como OpenGL ou 
DirectX;

• A aritimética de ponto-fixo era uma alternativa à lenta aritimética de ponto-flutuante, que era 
muito lenta. Hoje, trabalhar com “floats” e “doubles” é tão performático quanto trabalhar com 
aritimética inteira;

• EMM386 não é usado há muito tempo!

• Novos conjuntos de registradores estão disponíveis para o desenvolvedor em assembly. Desde 
às extensões para 64 bits (RAX, RBX etc), até a quantidade deles (15 registradores de uso geral 
na arquitetura x86-64). Ainda, temos SIMD (SSE), que disponibiliza registradores para uso em 
ponto-flutuante, e de forma paralela!

• Multithreading é uma realidade, com CPUs de multiplos “cores”;

O “curso” a seguir é uma velharia. Mas, ao que parece, ainda ajuda muita gente a entender a base do 
assembly. Eu penso nesses textos como documentos históricos...

Frederico Lamberti Pissarra
18 de março de 2014
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  Por: Frederico Pissarra

      A linguagem ASSEMBLY (e não  assemblER!) dá medo em muita gente!
  Só não sei porque!  As liguagens ditas de  "alto  nível"  são  MUITO
  mais  complexas  que  o  assembly!   O  programador assembly tem que
  saber, antes de mais nada, como está organizada a memória da máquina
  em que trabalha, a  disponibilidade  de rotinas pré-definidas na ROM
  do  micro  (que facilita muito a vida de vez em quando!) e os demais
  recursos que a máquina oferece.

      Uma  grande  desvantagem  do  assembly  com  relação  as  outras
  linguagens é que  não  existe  tipagem  de  dados como, por exemplo,
  ponto-flutuante...  O  programador  terá  que  desenvolver  as  suas
  próprias rotinas ou lançar mao do co-processador matemático (o TURBO
  ASSEMBLER,   da   Borland,   fornece   uma   maneira   de  emular  o
  co-processador).  Não existem funções de entrada-saída como PRINT do
  BASIC  ou  o  Write() do PASCAL...  Não existem rotinas que imprimam
  dados numéricos ou strings na  tela...  Enfim...  não existe nada de
  útil!  (Será?!  hehehe)

      Pra que serve o  assembly  então?   A  resposta é: Para que você
  possa desenvolver as suas próprias rotinas, sem ter  que  topar  com
  bugs  ou  limitações  de rotinas já existentes na ROM-BIOS ou no seu
  compilador  "C",  "PASCAL"  ou  qualquer  outro...   Cabe  aqui  uma
  consideração  interessante:  É  muito  mais  produtivo  usarmos  uma
  liguagem de alto nível juntamente com nossas rotinas em  assembly...
  Evita-se a "reinvenção da roda" e não temos que desenvolver TODAS as
  rotinas  necessárias  para  os  nossos  programas.  Em particular, o
  assembly é muito útil quando  queremos criar rotinas que não existem
  na liguagem de alto-nível  nativa!   Uma rotina ASM bem desenvolvida
  pode nos dar a vantagem da velocidade ou do tamanho mais reduzido em
  nossos programas.

      O  primeiro  passo  para  começar  a  entender  alguma  coisa de
  assembly é entender como a CPU organiza a memória.   Como  no  nosso
  caso a idéia é entender os microprocessadores da  família  80x86  da
  Intel (presentes em qualquer PC-Compatível), vamos dar uma  olhadela
  no modelamento de memória usado pelos PCs, funcionando sob o  MS-DOS
  (Windows,  OS/2,  UNIX,  etc...   usam  outro tipo de modelamento...
  MUITO MAIS COMPLICADO!).

  ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
   Modelamento REAL da memória - A segmentação ┃ ┃
  ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

      A memória de qualquer PC é dividida em segmentos.  Cada segmento
  tem 64k bytes  de  tamanho  (65536  bytes)  e  por mais estranho que
  pareça  os  segmentos  não  são  organizados  de  forma   sequencial
  (o  segmento seguinte não começa logo após o anterior!).  Existe uma
  sobreposiçao.  De uma olhada:



                     64k (tamanho do segmento 0)
      ┌─────────────────────────────────────────────────────┐

      ┌─────────────────────────────────────────────────────┬───────
      │                                                         ┊ ┊ ┊ ┊
      │                                                         ┊ ┊ ┊ ┊
      │                                                         ┊ ┊ ┊ ┊
      └─────────────────────────────────────────────────────┴───────
      0      1      2 ← Numero dos segmentos

      └─────────────┘
         16     16
       bytes   bytes

      O  segundo  segmento  começa   exatamente  16  bytes  depois  do
  primeiro.  Deu pra perceber que o inicio do  segundo  segmento  está
  DENTRO do primeiro, já que os segmentos tem 64k de tamanho!

      Este  esquema  biruta  confunde  bastante os programadores menos
  experientes e,  até  hoje,  ninguém  sabe  porque  a  Intel resolveu
  utilizar essa coisa esquisita.  Mas, paciência, é assim que a  coisa
  funciona!

      Para  encontrarmos  um  determinado  byte  dentro de um segmento
  precisamos  fornecer  o  OFFSET (deslocamento, em inglês) deste byte
  relativo ao inicio  do  segmento.   Assim,  se  queremos localizar o
  décimo-quinto byte do segmento 0, basta especificar 0:15,  ou  seja,
  segmento 0 e offset 15.  Esta notação é usada no restante deste e de
  outros artigos.

      Na  realidade  a  CPU  faz  o  seguinte cálculo para encontrar o
  "endereço físico" ou "endereço efetivo" na memória:

   ┌─────────────────────────────────────────────────────────────────┐
   │         ENDEREÇO-EFETIVO = (SEGMENTO ∙ 16) + OFFSET             │
   └─────────────────────────────────────────────────────────────────┘

      Ilustrando  a  complexidade   deste  esquema  de  endereçamento,
  podemos provar que existem  diversas  formas  de  especificarmos  um
  único "endereço  efetivo"  da  memória...   Por  exemplo, o endereço
  0:13Ah pode ser também escrito como:

      0001h:012Ah     0002h:011Ah     0003h:010Ah     0004h:00FAh
      0005h:00EAh     0006h:00DAh     0007h:00CAh     0008h:00BAh
      0009h:00AAh     000Ah:009Ah     000Bh:008Ah     000Ch:007Ah
      000Dh:006Ah     000Eh:005Ah     000Fh:004Ah     0010h:003Ah
      0011h:002Ah     0012h:001Ah     0013h:000Ah

      Basta fazer as contas que você verá que todas estas formas darão
  o   mesmo  resultado:  o  endereço-efetivo  0013Ah.   Generalizando,
  existem, no máximo,  16  formas  de  especificarmos o mesmo endereço
  efetivo! As únicas faixas de endereços que não tem equivalentes e só
  podem  ser  especificados  de  uma  única  forma  são  os  desesseis
  primeiros bytes do segmento  0  e  os  últimos  desesseis  bytes  do
  segmento 0FFFFh.

      Normalmente o programador não tem que se preocupar com esse tipo
  de coisa.  O compilador toma conta da melhor forma de endereçamento.
  Mas, como a toda regra existe uma excessão, a informação acima  pode



  ser útil algum dia.

  ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
   A BASE NUMÉRICA HEXADECIMAL E BINARIA (para os novatos...)        ┃ ┃
  ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

      Alguns  talvez  não  tenham  conhecimento  sobre as demais bases
  numéricas usadas na área informata.   É muito comum dizermos "código
  hexadecimal", mas o que significa?

      É bastante lógico que usemos o sistema decimal  como  base  para
  todos  os  cálculos  matemáticos  do  dia-a-dia pelo simples fato de
  temos DEZ dedos nas mãos...  fica  facil  contar  nos  dedos  quando
  precisamos.

      Computadores usam o sistema binário por um outro motimo simples:
  Existem apenas dois níveis de tensão presentes em todos os circuitos
  lógicos:  níveis baixo  e  alto  (que  são  chamados  de  0 e 1, por
  conveniência...  para podermos medi-los  sem  ter  que recorrer a um
  multímetro!).   O  sistema  hexadecimal  também tem o seu lugar: é a
  forma mais abreviada de escrever um conjunto de bits.

      Em decimal, o número 1994, por exemplo, pode ser escrito como:

         1994 = (1 ∙ 10³) + (9 ∙ 10²) + (9 ∙ 10¹) + (4 ∙ 10 )⁰

      Note a base 10  nas  potências.   Faço  agora uma pergunta: Como
  representariamos o mesmo númer se tivessemos 16 dedos nas mãos?

       Primeiro teriamos que obter mais digitos...  0 até 9  não  são➠
        suficientes.   Pegaremos mais 6 letras do alfabeto para suprir
        esta deficiencia.

       Segundo,  Tomemos  como  inspiração  um  odômetro (equipamento➠
        disponível  em  qualquer  automóvel   -   é   o   medidor   de
        quilometragem!):  Quando  o  algarismo mais a direita (o menos
        significativo) chega a 9  e  é  incrementado, o que ocorre?...
        Retorna a 0 e o próximo é incrementado,  formando  o  10.   No
        caso  do sistema hexadecimal, isto só acontece quando o último
        algarismo alcança F e é  incrementado!   Depois  do 9 vem o A,
        depois o B, depois o C, e assim por diante...   até  chegar  a
        vez  do  F e saltar para 0, incrementando o próximo algarismo,
        certo?

    Como contar em base diferente  de  dez  é uma situação não muito
intuitiva, vejamos a regra de conversão de bases.  Começaremos  pela
base  decimal  para  a  hexadecimal.   Tomemos  o  número  1994 como
exemplo.   A  regra  é   simples:   Divide-se   1994  por  16  (base
hexadecimal) até que o quoeficiente seja zero...  toma-se os  restos
e tem-se o númer convertido para hexadecimal:

  ┌───────────────────────────────────────────────────────────────┐
  │ 1994 ÷ 16       Quociente = 124, Resto = 10       10=A      │⇒ ⇒
  │ 124 ÷ 16        Quociente = 7, Resto = 12         12=C      │⇒ ⇒
  │ 7 ÷ 16          Quociente = 0, Resto = 7           7=7      │⇒ ⇒
  └───────────────────────────────────────────────────────────────┘

    Toma-se então os restos de baixo para cima, formando o número em
hexadecimal. Neste caso, 1994=7CAh



    Acrescente um 'h' no fim do número para sabermos que se trata da
base  16,  do  contrário,  se  olharmos  um  número "7CA" poderiamos
associa-lo a  qualquer  outra  base  numérica  (base octadecimal por
exemplo!)...

    O processo inverso, hexa → decimal,  é  mais  simples...   basta
escrever  o númer, multiplicando  cada digito pela potência correta,
levando-se em conta a equivalencia das letras com a base decimal:

 ┌────────────────────────────────────────────────────────────────┐
 │  7CAh = (7 ∙ 16²) + (C ∙ 16¹) + (A ∙ 16 ) =                    │⁰
 │         (7 ∙ 16²) + (12 ∙ 16¹) + (10 ∙ 16 ) =                  │⁰
 │         1792 + 192 + 10 = 1994                                 │
 └────────────────────────────────────────────────────────────────┘

    As mesmas regras podem  ser  aplicadas  para a base binária (que
tem apenas dois digitos: 0 e  1).   Por  exemplo,  o  número  12  em
binário fica:

 ┌────────────────────────────────────────────────────────────────┐
 │  12 ÷ 2       Quociente = 6, Resto = 0                        │⇒
 │  6 ÷ 2        Quociente = 3, Resto = 0                        │⇒
 │  3 ÷ 2        Quociente = 1, Resto = 1                        │⇒
 │  1 ÷ 2        Quociente = 0, Resto = 1                        │⇒
 │                                                                │
 │  12 = 1100b                                                    │
 └────────────────────────────────────────────────────────────────┘

    Cada digito na base binária é conhecido como BIT (Binary digIT -
ou  digito  binário,  em  inglês).   Note  o  'b'  no  fim do número
convertido...

    Faça o processo inverso... Converta 10100110b para decimal.

    A vantagem de usarmos um  número  em base hexadecimal é que cada
digito hexadecimal equivale a exatamente  quatro  digitos  binários!
Faça  as  contas: Quatro bits podem conter apenas 16 números (de 0 a
15), que é exatamente a quantidade de digitos na base hexadecimal.
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Por: Frederico Pissarra

    Mais  alguns  conceitos  são  necessários  para  que  o pretenso
programador ASSEMBLY  saiba  o  que  está  fazendo.   Em  eletrônica
digital  estuda-se  a  algebra  booleana  e  aritimética com números
binários.  Aqui esses conceitos  também  são  importantes...   Vamos
começar pela aritimética binária:

    A  primeira  operação  básica  -   a   soma  -  não  tem  muitos
mistérios...  basta recorrer ao equivalente decimal.  Quando somamos
dois números  decimais,  efetuamos  a  soma  de  cada  algarismo  em
separado,  prestando  atenção  aos  "vai  um"  que  ocorrem entre um
algarismo e outro. Em binário fazemos o mesmo:

  ┌───────────────────────────────────────────────────────────────┐
  │ 1010b + 0110b = ?                                             │
  │                                                               │
  │    111         ← "Vai uns"                                    │
  │     1010b                                                     │
  │   + 0110b                                                     │
  │   ─────────                                                   │
  │    10000b                                                     │
  └───────────────────────────────────────────────────────────────┘

    Ora, na base decimal, quando se soma - por exemplo - 9 e 2, fica
1 e "vai um"...  Tomemos o  exemplo do odômetro (aquele indicador de
quilometragem do carro): 09 → 10 → 11

    Enquanto  na  base  decimal  existem 10 algarismos (0 até 9), na
base binária temos 2 (0 e 1).  O odômetro ficaria assim:
00b → 01b → 10b → 11b

    Portanto, 1b + 1b = 10b ou, ainda, 0b e "vai um".

    A  subtração  é  mais complicada de entender...  Na base decimal
existem os números  negativos...   em  binário não!  (Veremos depois
como  "representar" um número negativo em binário!).  Assim, 1b - 1b
= 0b (lógico), 1b - 0b  =  1b  (outra  vez, evidente!), 0b - 0b = 0b
(hehe...  você deve estar achando que eu estou te sacaneando,  né?),
mas e 0b - 1b = ?????

    A solução é a  seguinte:  Na  base  decimal quando subtraimos um
algarismo menor de outro maior costumamos "tomar um emprestado" para
que a conta fique correta.  Em binário a  coisa  funciona  do  mesmo
jeito,  mas  se  não  tivermos de onde "tomar um emprestado" devemos
indicar que foi tomado um de qualquer forma:



  ┌───────────────────────────────────────────────────────────────┐
  │ 0b - 1b = ?                                                   │
  │                                                               │
  │     1         ← Tomamos esse um emprestado de algum lugar!    │
  │      0b                            (não importa de onde!)     │
  │   -  1b                                                       │
  │   ──────                                                      │
  │      1b                                                       │
  └───────────────────────────────────────────────────────────────┘

    Esse "1" que apareceu por mágica é conhecido como BORROW.  Em um
número binário maior basta usar o mesmo artificio:

  ┌───────────────────────────────────────────────────────────────┐
  │ 1010b - 0101b = ?                                             │
  │                                                               │
  │      1 1         ← Os "1"s que foram tomados emprestados são  │
  │      1010b          subtraídos no proximo digito.             │
  │    - 0101b                                                    │
  │   ─────────                                                   │
  │      0101b                                                    │
  └───────────────────────────────────────────────────────────────┘

    Faça  a  conta:  0000b   -   0001b,   vai  acontecer  uma  coisa
interessante!  Faça a mesma conta usando um programa, ou calculadora
cientifica,  que  manipule  números binários...  O resultado vai ser
ligairamente diferente por causa da limitação dos digitos suportados
pelo software (ou calculadora).  Deixo  a  conclusão  do  "por  que"
desta diferença para você...   (Uma  dica,  faça  a conta com os "n"
digitos suportados pela calculadora e terá a explicação!).

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
 Representando números negativos em binário                        ┃ ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

    Um artificio da algebra  booleana  para  representar  um  número
interiro  negativo  é  usar  o último bit como indicador do sinal do
número.  Mas, esse  artificio  gera  uma segunda complicação...

    Limitemos esse estudo ao tamanho  de  um  byte (8 bits)...  Se o
bit 7 (a contagem começa pelo bit 0 - mais a direita) for 0 o número
representado é positivo, se for 1, é negativo.  Essa é  a  diferença
entre um "char" e um "unsigned char" na linguagem C - ou um "char" e
um  "byte"  em  PASCAL (Note que um "unsigned char" pode variar de 0
até 255 - 00000000b até 11111111b  -  e um "signed char" pode variar
de -128 até 127 - exatamenta a mesma faixa, porém um tem sinal  e  o
outro não!).

    A complicação que falei acima  é com relação à representação dos
números  negativos.   Quando  um  número  não  é   nagativo,   basta
convertê-lo para base decimal que você saberá qual é esse número, no
entanto,  números  negativos  precisam ser "complementados" para que
saibamos o número que está sendo representado.  A coisa N─O funciona
da seguinte forma:

 ┌────────────────────────────────────────────────────────────────┐
 │  00001010b   =   10                                            │
 │  10001010b   =  -10     (ERRADO)                               │
 └────────────────────────────────────────────────────────────────┘



    Não basta "esquecermos" o bit 7  e lermos o restante do byte.  O
procedimento  correto  para   sabermos   que   número   está   sendo
representado negativamente no segundo exemplo é:

     Inverte-se todos os bits e,➠
     Soma-se 1 ao resultado➠

  ┌───────────────────────────────────────────────────────────────┐
  │ 10001010b   →  01110101b + 00000001b   →  01110110b           │
  │ 01110110b   =   118                                           │
  │ Logo:                                                         │
  │ 10001010b   =  -118                                           │
  └───────────────────────────────────────────────────────────────┘

    Com isso podemos explicar a diferença entre os extremos da faixa
de um "signed char":

     Os  números positivos contam  de 00000000b até 01111111b, isto➠
      é, de 0 até 127.

     Os números negativos  contam  de 10000000b até 11111111b, isto➠
      é, de -128 até -1.

    Em "C" (ou PASCAL), a mesma lógica pode ser aplicada aos "int" e
"long" (ou INTEGER e  LONGINT),  só  que  a  quantidade de bits será
maior  ("int"  tem  32 ou  16  bits  de  tamanho, de  acordo  com  a 
arquitetura, e "long" tem 32).

    Não se preocupe MUITO com a representação de  números  negativos
em binário...  A CPU toma conta de tudo  isso  sozinha...   mas,  as
vezes,  você  tem  que  saber que resultado poderá ser obtido de uma
operação aritimética em seus programas, ok?

    As outras duas operações matemáticas  básicas  (multiplicação  e
divisão) tanbém estão presentes nos processadores 80x86...  Mas, não
necessitamos ver como o processo é feito a nível binário.  Confie na
CPU!  :)
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Por: Frederico Pissarra

    Comecemos   a   dar    uma    olhadela    na   arquitetura   dos
microprocessadores   da   família    INTEL   80x86...    Vamos   aos
registradores!

    Entenda  os  registradores  como  se  fossem  variáveis  que   o
microprocessador  disponibiliza  ao sistema.  TODOS os registradores
têm 16 bits de tamanho e aqui vai a descrição deles:

     ┌──────┐
     │  AX  │←─┐
     ├──────┤  │
     │  BX  │←─┤
     ├──────┤  ├── Registradores de uso geral
     │  CX  │←─┤
     ├──────┤  │
     │  DX  │←─┘
     └──────┘
     ┌──────┐
     │  SI  │←─── índice FONTE (Source Index)
     ├──────┤
     │  DI  │←─── índice DESTINO (Destination Index)
     └──────┘
     ┌──────┐
     │  SP  │←─── Apontador de pilha (Stack Pointer)
     ├──────┤
     │  BP  │←─── Apontador de base (Base Pointer)
     └──────┘
     ┌──────┐
     │  CS  │←─── Segmento de Cógido (Code Segment)
     ├──────┤
     │  DS  │←─── Segmento de Dados (Data Segment)
     ├──────┤
     │  ES  │←─── Segmento de dados Extra (Extra data Segment)
     ├──────┤
     │  SS  │←─── Segmento de Pilha (Stack Segment)
     └──────┘
     ┌──────┐
     │  IP  │←─── Apontador de instrução (Instruction Pointer)
     └──────┘
     ┌──────┐
     │Flags │←─── Sinalizadores
     └──────┘

    Por  enquanto vamos nos deter na descrição dos registradores uso
geral...  Eles podem ser  subdivididos  em dois registradore de oito
bits cada:



        AX (16 bits)            BX (16 bits)
    ┌─────────────────┐     ┌─────────────────┐
    ┌────────┬────────┐     ┌────────┬────────┐
    │   AH   │   AL   │     │   BH   │   BL   │
    └────────┴────────┘     └────────┴────────┘
    15      8 7      0      15      8 7      0

        CX (16 bits)            DX (16 bits)
    ┌─────────────────┐     ┌─────────────────┐
    ┌────────┬────────┐     ┌────────┬────────┐
    │   CH   │   CL   │     │   DH   │   DL   │
    └────────┴────────┘     └────────┴────────┘
    15      8 7      0      15      8 7      0

    AH é o byte mais significativo do registrador AX,  enquanto  que
AL  é  o  menos  significativo.   Se  alterarmos  o  conteúdo de AL,
estaremos alterando  o  byte  menos  significativo  de  AX  ao mesmo
tempo...  Não existem registradores  de  oito  bits  em  separado...
tudo  é  uma  coisa  só.   Portanto,  ao  manipularmos AH, estaremos
manipulando AX ao mesmo tempo!

    O nome de cada registrador tem  o  seu sentido de ser...  "A" de
AX quer dizer  que  este  registrador  é  um "acumulador" (usado por
default em algumas operações matematicas!), por exemplo...

    AX  → Acumulador
    BX  → Base
    CX  → Contador
    DX  → Dados

    O  "X"  de  AX  significa "eXtended".  "H" de AH significa "High
byte".

    Embora estes registradores possam ser usados sem  restrições,  é
interessante  atribuir  uma  função  para  cada  um deles nos nossos
programas sempre que possível...  Isto  facilita a leitura do código
e nos educa a seguirmos uma  linha  de  raciocínio  mais  concisa...
Mas,  se  for  de  sua preferência não seguir qualquer padrão no uso
desses  registradores,  não  se  preocupe...   não  haverá  qualquer
desvantagem nisso  (Well...   depende  do  código,  as  vezes  somos
obrigados a usar determinado registrador!).

    Alguns pontos importantes quanto  a esses nomes serão observados
no decorrer do curso...  Por exemplo, certas instruções usam AX  (ou
AL, ou AH) e  somente  ele,  não  permitindo  o  uso de nenhum outro
registrador...   Outras,  usam  CX  para   contar,   etc...    essas
instruções específicas serão vistas em outra oportunidade.

    Os registradores SI e DI  são  usados como índices para tabelas.
Em particular, SI é usado para leitura  de  uma  tabela  e  DI  para
escrita  (fonte  e  destino...   lembra algum procedimento de cópia,
nao?).  No entanto, esses registradores  podem ser usados com outras
finalidades...  Podemos incluí-los no grupo de "registradores de uso
geral",  mas  assim como alguns registradores de uso geral, eles têm
aplicação exclusiva  em  algumas  instruções,  SI  e  DI  são usados
especificamente  como  índices  em  instruções  que manipulam blocos
(também veremos isso mais tarde!).

    Os registradores CS, DS,  ES  e  SS  armazenam os segmentos onde



estão o código  (programa  sendo  executado),  os  dados,  os  dados
extras,  e  a  pilha,  respectivamente.   Lembre-se  que a memória é
segmentada em blocos de 64kbytes (dê uma olhada na primeira mensagem
dessa série).

    Quando nos referimos, através de alguma instrução, a um endereço
de memória, estaremos nos referindo ao OFFSET dentro de um segmento.
O registrador de  segmento  usado  para  localizar  o dado no offset
especificado vai depender da própria  instrução...   Um  exemplo  em
assembly:

 ┌────────────────────────────────────────────────────────────────┐
 │      MOV     AL,[1D4Ah]                                        │
 └────────────────────────────────────────────────────────────────┘

    O  número  hexadecimal  entre  os  colchetes é a indicação de um
offset em um segmento...  Por  default, a maioria das instruções usa
o segmento de dados (valor em  DS).  A instrução acima é equivalente
a:

 ┌────────────────────────────────────────────────────────────────┐
 │      AL = DS:[1D4Ah]                                           │
 └────────────────────────────────────────────────────────────────┘

    Isto é, em AL será colocado o byte que está armazenado no offset
1D4Ah  do  segmento  de  dados (valor em DS).  Veremos mais sobre os
segmentos e as instruções mais tarde :)

    Se quisessemos localizar o byte  desejado em outro segmento (mas
no mesmo offset) devemos especificar o registrador  de  segmento  na
instrução:

 ┌────────────────────────────────────────────────────────────────┐
 │      MOV     AL,ES:[1D4Ah]                                     │
 └────────────────────────────────────────────────────────────────┘

    Aqui o valor de ES será usado.

    O registrador IP (Instruction Pointer) é o offset do segmento de
código  que  contém  a  próxima  instrução  a  ser  execuatda.  Este
registrador não é acessível por qualquer instrução (pelo  menos  não
pelas   documentadas   pela   Intel)...    é   de   uso  interno  do
microprocessador.    No   entanto   existem   alguns   macetes  para
conseguirmos obter o seu conteúdo (o que na maioria  das  aplicações
não  é  necessario...   Para  que  conhecer  o  endereço  da próxima
instrução se ela var ser executada de qualquer jeito?).

    O registrador SP é o offset do segmento SS (segmento  de  pilha)
onde o próximo dado vai ser empilhado.  A pilha serve para armazenar
dados  que posteriormente podem ser recuperados sem que tenhamos que
usar um  dos  registradores  para  esse  fim.   Também  é usada para
armazenar o endereço de retorno das sub-rotinas.  A  pilha  "cresce"
de  cima  para baixo, isto é, SP é decrementado cada vez que um novo
dado é colocado na pilha.  Note  também que existe um registrador de
segmento exclusivo para a pilha... SP sempre está relacionado a  esse
segmento (SS), como foi dito antes.

    Para  ilustrar  o  funcionamento  da  pilha,  no  gráfico abaixo
simularemos o empilhamento do conteúdo do registrador AX através  da



instrução:

 ┌─────────────────────────────────────────────────────────────────┐
 │      PUSH    AX                                                 │
 └─────────────────────────────────────────────────────────────────┘

 ┌─────────────────────────────────────────────────────────────────┐
 │  AX = A527h (Valor em AX)                                       │
 │                                                                 │
 │   ┌───────┐                       ┌───────┐                     │
 │   │ ????h │←──── SP = n           │ ????h │                     │
 │   ├───────┤                       ├───────┤                     │
 │   │       │                       │ A527h │←──── SP = n - 2     │
 │   └───────┘                       └───────┘                     │
 │                                                                 │
 │ (antes de PUSH AX)              (depois de PUSH AX)             │
 └─────────────────────────────────────────────────────────────────┘

    Observe que SP sempre aponta para o último dado empilhado.

    Na  realidade  SP  é  decrementado  de duas posições ao invés de
apenas uma... mas, esse detalhe deixo para mais tarde.

    O registrador BP pode ser usado como apontador para  a  base  da
pilha (já que,  por  default,  está  relacionado  a  SS)  ou como um
registrador de uso geral...  depende do seu programa.  Veremos  isso
detalhadamente mais tarde.

    Um   dos    registradores    mais    importantes   de   qualquer
microprocessador é o de "Flags".  Eis uma descrição dos  bits  deste
registrador  (a descrição abaixo aplica-se ao 8086.  Normalmente não
acessamos diretamente  o  registrador  de  flags  -  embora possamos
fazê-lo - por isso não é conveniente assumirmos que  os  bits  estão
sempre  no  mesmo  lugar  para  qualquer microprocessador da família
80x86!):

 ┌────────────────────────────────────────────────────────────────┐
 │            ┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐                   │
 │            │ │ │ │ │O│D│I│T│S│Z│ │A│ │P│ │C│                   │
 │            └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘                   │
 │            15                             0                    │
 │                                                                │
 │  C = Carry                                                     │
 │  P = Parity                                                    │
 │  A = Auxiliar Carry                                            │
 │  Z = Zero                                                      │
 │  S = Signal                                                    │
 │  T = Trap                                                      │
 │  I = Interrupt Enable Flag                                     │
 │  D = Direction                                                 │
 │  O = OverFlow                                                  │
 └────────────────────────────────────────────────────────────────┘

     Carry:➠

        Esse  flag  é setado sempre quando houver "vai um" depois de
    uma  adição  ou  quando  há  BORROW depois de uma subtração.  Ou
    quando, numa operação de  deslocamento  de  bits,  o bit mais ao
    extremo for deslocado para fora do dado (suponha um byte...   se



    todos  os bits forem deslocados em uma posição para a direita, o
    que acontece com o bit 0?...  Resposta: Vai para o carry!)

     Parity:➠

        Depois  de  uma  instrução  aritimética  ou  lógica este bit
    informa se o resultado tem um número par de "1"s ou não.

     Auxiliar Carry:➠

        Igual ao carry, mas indica o "vai um" no meio de um dado (no
    caso de um byte, se houve "vai um" do bit 3 para o bit 4!).

     Zero:➠

        Depois de  uma  operação  aritimética  ou  lógica, esse flag
    indica se o resultado é zero ou não.

     Signal:➠

        Depois de uma instrução aritimética ou lógica, este  flag  é
    uma  cópia  do  bit de mais alta ordem do resultado, isto é, seu
    sinal (dê uma olhada  na  "representação de números negativos em
    binário" no texto anterior!).

     Trap:➠

        Quando setado (1)  executa  instruções passo-a-passo...  Não
    nos interessa estudar esse  bit  por  causa  das  diferenças  de
    implementação deste flag em toda a família 80x86.

     Interrupt Enable Flag➠

        Habilita/Desabilita   o   reconhecimento   de   interrupções
    mascaráveis pela CPU. Sobre interrupções, veremos mais tarde!

     Direction:➠

        Quando   usamos   instruções   de   manipulação  de  blocos,
    precisamos especificar a direção que  usaremos (do inicio para o
    fim ou do fim para o inicio).

        Quando D=0 a direção é a do início para o fim...  D=1, então
    a direção é contrária!

     OverFlow:➠

        Depois de uma instrução  aritimética  ou  lógica,  este  bit
    indica se houve mudança no bit mais significativo, ou  seja,  no
    sinal.  Por exemplo, se somarmos FFFFh + 0001h obteremos 00h.  O
    bit  mais  significativo variou de 1 para 0 (o counteúdo inicial
    de um registrador era FFFFh  e  depois  da soma foi para 0000h),
    indicando que o resultado saiu da faixa (overflow) - ora,  FFFFh
    +  0001h = 10000h, porém um registrador tem 16 bits de tamanho e
    o resultado cabe em  17  bits.   Neste  exemplo,  o bit de carry
    também será setado  pois  houve  "vai  um"  do  bit  15  para  o
    inexistente  bit  16,  mas não confunda o flag de overflow com o
    carry!



    Quando aos demais bits, não  se pode prever seus estados lógicos
(1 ou 0).

    Na próxima  "aula"  começaremos  a  ver   algumas  instruções do
microprocessador 8086.  Ainda não escreveremos  nenhum  programa,  a
intenção  é  familiarizá-lo  com  a  arquitetura do microprocessador
antes de começarmos a colocar a  mão  na massa...  tenha um pouco de
paciência! :)
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Por: Frederico Pissarra

    Começaremos a ver algumas instruções  do  microprocessador  8086
agora.  Existem os seguintes tipos de instruções:

     Instruções Aritiméticas➠
     Instruções Lógicas➠
     Instruções de Controle de Fluxo de Programa➠
     Instruções de manipulação de flags➠
     Instruções de manipulação da pilha➠
     Instruções de manipulação de blocos➠
     Instruções de manipulação de registradores/dados➠
     Instruções de Entrada/Saída➠

    Vamos   começar   com   as   instruções   de   manipulação    de
registradores/dados por serem estas as mais fáceis de entender.

┏━━━━━━━━━━━━━━━┓
 Instrução MOV ┃ ┃
┗━━━━━━━━━━━━━━━┛

      MOV tem a finalidade  de  MOVimentar  um  dado  de um lugar para
  outro.  Por exemplo, para carregar um registrador com um determinado
  valor.  Isto é feito com MOV:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV AX,0001h                                                  │
   └────────────────────────────────────────────────────────────────┘

      É a mesma coisa que dizer: "AX = 1".  Na verdade, movimentamos o
  valor 1 para dentro do registrador AX.

      Podemos mover o conteúdo de um registrador para outro:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV BH,CL                                                     │
   └────────────────────────────────────────────────────────────────┘

      É a mesma coisa que "BH = CL"!

      Os registradores de segmento não podem ser inicializados com MOV
  tomando um parametro imediato (numérico).  Esses  registradores  são
  inicializados indiretamente:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV DS,0    ; ERRADO!!!                                       │
   │                                                                │
   │  MOV AX,0                                                      │
   │  MOV DS,AX   ; CORRETO!                                        │
   └────────────────────────────────────────────────────────────────┘

      Carregar um registrador com o conteúdo (byte ou word, depende da
  instrução!) armazenado em um segmento é simples, basta especificar o
  offset  do  dado  entre  colchetes.  Atenção que o segmento de dados
  (DS) é assumido por default com algumas excessões:



   ┌────────────────────────────────────────────────────────────────┐
   │  MOV AL,[0FFFFh]                                               │
   └────────────────────────────────────────────────────────────────┘

      A instrução acima, pega o byte armazenado no endereço DS:FFFFh e
  coloca-o em  AL.   Sabemos  que  um  byte  vai  ser  lido  do offset
  especificado porque AL tem 8 bits de tamanho.
      Ao  invés  de  usarmos  um  offset  imediato  podemos  usar   um
  registrador:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV BX,0FFFFh                                                 │
   │  MOV CH,[BX]                                                   │
   └────────────────────────────────────────────────────────────────┘

      Neste caso, BX contém o offset e o  byte  no  endereço  DS:BX  é
  armazenado  em  CH.   Note  que  o  registrador  usado  como  indice
  obrigatoriamente deve ser de 16 bits.

      Uma   observação   quanto   a  essa  modalidade:  Dependendo  do
  registrador usado como offset, o segmento default poderá ser  DS  ou
  SS.   Se  ao invés de BX usassemos BP, o segmento default seria SS e
  não DS - de uma olhada no diagrama de distribuição dos registradores
  no texto anterior.  BP foi colocado  no mesmo bloco de SP, indicando
  que ambos estão relacionados com  SS  (Segmento  de pilha) - Eis uma
  tabela das modalidades e dos segmentos default que podem ser  usados
  como offset:

   ┌─────────────────────────────┬─────────────────────────────────┐
   │  Offset usando registros    │    Segmento default             │
   ├─────────────────────────────┼─────────────────────────────────┤
   │  [SI + deslocamento]        │    DS                           │
   │  [DI + deslocamento]        │    DS                           │
   │  [BP + deslocamento]        │    SS                           │
   │  [BX + deslocamento]        │    DS                           │
   │  [BX + SI + deslocamento]   │    DS                           │
   │  [BX + DI + deslocamento]   │    DS                           │
   │  [BP + SI + deslocamento]   │    SS                           │
   │  [BP + DI + deslocamento]   │    SS                           │
   └─────────────────────────────┴─────────────────────────────────┘

      O  "deslocamento"  pode  ser  suprimido  se  for 0.

      Você  pode evitar o segmento default explicitando um registrador
  de segmento na instrução:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV DH,ES:[BX]      ;Usa ES ao invés de DS                    │
   │  MOV AL,CS:[SI + 4]  ;Usa CS ao invés de DS                    │
   └────────────────────────────────────────────────────────────────┘

      Repare que tenho usado os registradores de 8 bits para armazenar
  os dados... Pode-se usar os de 16 bits também:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV ES:[BX],AX         ; Poe o valor de AX para ES:BX         │
   └────────────────────────────────────────────────────────────────┘



      Só que neste caso serão armazenados 2 bytes no  endereço  ES:BX.
  O  primeiro  byte  é  o  menos  significativo  e  o  segundo  o mais
  signigicativo.  Essa instrução equivale-se a:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV ES:[BX],AL            ; Instruçõess que fazem a mesma     │
   │  MOV ES:[BX + 1],AH        ;coisa que MOV ES:[BX],AX           │
   └────────────────────────────────────────────────────────────────┘

      Repare também que não é possível mover o conteúdo de uma posição
  da  memória  para  outra,  diretamente,  usando  MOV.   Existe outra
  instrução que faz isso: MOVSB ou MOVSW.   Veremos  essas  instruções
  mais tarde.

      Regra geral: Um dos operandos TEM que ser um registrador!  Salvo
  no caso da movimentação de um imediato para uma posição de memória:

   ┌───────────────────────────────────────────────────────────────┐
   │  MOV [DI],[SI]       ; ERRO!                                  │
   │  MOV [BX],0          ; OK!                                    │
   └───────────────────────────────────────────────────────────────┘

      Para ilustrar o uso da instrução MOV, eis um  pedaço  do  código
  usado  pela  ROM-BIOS  do  IBM  PS/2  Modelo  50Z  para  verificar a
  integridade dos registradores da CPU:

   ┌────────────────────────────────────────────────────────────────┐
   │  ...                                                           │
   │  MOV AX,0FFFFh            ;Poe 0FFFFh em AX                    │
   │  MOV DS,AX                                                     │
   │  MOV BX,DS                                                     │
   │  MOV ES,BX                                                     │
   │  MOV CX,ES                                                     │
   │  MOV SS,CX                                                     │
   │  MOV DX,SS                                                     │
   │  MOV SI,DX                                                     │
   │  MOV DI,SI                                                     │
   │  MOV BP,DI                                                     │
   │  MOV SP,BP                                                     │
   │  ...                                                           │
   └────────────────────────────────────────────────────────────────┘

      Se o conteúdo de BP não  for  0FFFFh  então a CPU está com algum
  problema e o computador não pode funcionar!  Os flags  são  testados
  de uma outra forma...  :)

  ┏━━━━━━┓
   XCHG ┃ ┃
  ┗━━━━━━┛

      Esta instrução serve para trocarmos o conteúdo de um registrador
  pelo outro. Por exemplo:

   ┌────────────────────────────────────────────────────────────────┐
   │  XCHG    AH,AL                                                 │
   └────────────────────────────────────────────────────────────────┘

      Se  AH=1Ah  e  AL=6Dh,  após  esta instrução AH=6Dh e AL=1Ah por



  causa da troca...

      Pode-se  usar uma referência à memória assim como em MOV...  com
  a  mesma  restrição  de  que  um   dos  operandos  TEM  que  ser  um
  registrador.   Não  há  possibilidade  de usar um operando imediato.

  ┏━━━━━━━━━━━━━━━┓
   MOVSB e MOUSW ┃ ┃
  ┗━━━━━━━━━━━━━━━┛

      Essas  instruções  suprem   a   deficiência   de  MOV  quanto  a
  movimentação  de  dados  de  uma   posição  de  memória  para  outra
  diretamente.  Antes de ser chamada os  seguintes  registradores  tem
  que ser inicializados:

   ┌───────────────────────────────────────────────────────────────┐
   │  DS:SI   ← DS e SI têm o endereço fonte                       │
   │  ES:DI   ← ES e DI têm o endereço destino                     │
   └───────────────────────────────────────────────────────────────┘

      Dai podemos executar MOVSB ou MOVSW.

      MOVSB move um byte, enquanto MOVSW move um word (16 bits).

      Os registradores SI e  DI  sao incrementados ou decrementados de
  acordo com o flag D (Direction) - Veja discussão sobre os  flags  na
  mensagem  anterior.   No  caso de MOVSW, SI e DI serao incrementados
  (ou decrementados) de 2 posições de  forma que DS:SI e ES:DI apontem
  sempre para a próxima word.

  ┏━━━━━━━━━━━━━━━┓
   STOSB e STOSW ┃ ┃
  ┗━━━━━━━━━━━━━━━┛

      Essas  instruções  servem para armazenar um valor que está em AX
  ou AL  (dependendo  da  instrução  usada)  no  endereço apontado por
  ES:DI.  Então, antes de  ser  chamada,  os  seguintes  registradores
  devem ser inicializados:

   ┌────────────────────────────────────────────────────────────────┐
   │  AX      → Valor a ser armazenado se usarmos STOSW             │
   │  AL      → Valor a ser armazenado se usarmos STOSB             │
   │  ES:DI   → Endereço onde o dado será armazenado                │
   └────────────────────────────────────────────────────────────────┘

      Depois   da   execução   da  instrução  o  registrador  DI  será
  incrementado ou decrementado de acordo com o flag D (Direction).  DI
  será incrementado de 2 no  case  de  usarmos STOSW, isto garante que
  ES:DI aponte para a proxima word.

  ┏━━━━━━━━━━━━━━━┓
   LODSB e LODSW ┃ ┃
  ┗━━━━━━━━━━━━━━━┛

      Essas  instruções  servem para ler um valor que está no endereço
  apontado  por  DS:SI  e  armazená-lo  em  AX  ou  AL  (dependendo da



  instrução  usada).   Então,  antes  de  ser  chamada,  os  seguintes
  registradores devem ser inicializados:

   ┌────────────────────────────────────────────────────────────────┐
   │  DS:SI   → Endereço de onde o dado será lido                   │
   └────────────────────────────────────────────────────────────────┘

      Depois   da   execução   da  instrução  o  registrador  SI  será
  incrementado ou decrementado de acordo com o flag D (Direction).  No
  caso de usarmos LODSW, SI será incrementado de 2 para  garantir  que
  DS:SI aponte para a próxima word.

  ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
   Outras instruções de manipulação de registros/dados              ┃ ┃
  ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

      Existem ainda as instruções LEA, LES e LDS.

    LEA:➠

      LEA é,  basicamente,  igual  a  instrução  MOV,  com  apenas uma
  diferença: o  operando  "fonte"  é  um  endereço  (precisamente:  um
  "offset").   LEA  simplesmente calcula o endereço e transfere para o
  operando  "destino",  de   forma   que   as  instruções  abaixo  sao
  equivalentes:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV     BX,100h                                               │
   │  LEA     BX,[100h]                                             │
   └────────────────────────────────────────────────────────────────┘

      Porém, a instrução:

   ┌────────────────────────────────────────────────────────────────┐
   │  LEA     DX,[BX + SI + 10h]                                    │
   └────────────────────────────────────────────────────────────────┘

      Equivale a:

   ┌────────────────────────────────────────────────────────────────┐
   │  MOV     DX,BX                                                 │
   │  ADD     DX,SI         ; DX = DX + SI                          │
   │  ADD     DX,10h        ; DX = DX + 10h                         │
   └────────────────────────────────────────────────────────────────┘

      Repare que apenas uma  instrução  faz  o  serviço de três!!  Nos
  processadores 286 e  386  a  diferença  é  significativa,  pois,  no
  exemplo acima, LEA gastará  3  (nos  286)  ou  2 (nos 386) ciclos de
  máquina enquando o equivalente gastará 11 (nos 286) ou 6  (nos  386)
  ciclos  de  máquina!   Nos processadores 8088/8086 a diferença não é
  tao grande...

      Obs:
          Consideremos cada ciclo  de  máquina seria, aproximadamente,
          num 386DX/40, algo em torno de 300ns - ou 0,0000003s.  É uma
          medida empirica e não expressa a grandeza real  (depende  de
          uma série de fatores não considerados aqui!).

      O  operando  "destino"  é  sempre  um  registrador.   O operando



  "fonte" é sempre um endereço.

    LDS e LES➠

      Existe  uma  forma  de  carregar   um   par   de   registradores
  (segmento:offset)  de uma só vez.  Se quisermos carregar DS:DX basta
  usar a instrução LDS, caso o alvo seja ES, usa-se LES.

      Suponhamos que numa posição  da  memória tenhamos um double word
  (número  de  32  bits)  armazenado.   A  word   mais   significativa
  correspondendo  a  um  segmento  e a menos signigicativa a um offset
  (esse é o caso da tabela dos vetores de interrupção, que descreverei
  com poucos detalhes em uma outra oportunidade!). Se usamos:

   ┌────────────────────────────────────────────────────────────────┐
   │  LES BX,[SI]                                                   │
   └────────────────────────────────────────────────────────────────┘

      O par ES:BX  será  carregado  com  o  double  word armazenado no
  endereço  apontado  por  DS:SI  (repare  no  segmento  default   que
  discutimos  em um texto anterior!).  A instrução acima é equivalente
  a:

   ┌───────────────────────────────────────────────────────────────┐
   │  MOV     BX,[SI+2]                                            │
   │  MOV     ES,BX                                                │
   │  MOV     BX,[SI]                                              │
   └───────────────────────────────────────────────────────────────┘

      De novo, uma instrução substitui três!

  ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
   Manipulando blocos... parte I                                   ┃ ┃
  ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

      As instruções MOVSB, MOVSW, STOSB, STOSW, LODSB  e  LODSW  podem
  ser usadas para lidar com blocos de dados.  Para isto, basta indicar
  no  registrador  CX  a  quantidade  de  dados  a serem manipulados e
  acrescentar  REP  na  frente  da  instruçao.   Eis  um trecho de uma
  pequena rotina que apaga o video em modo texto (80 x 25 colorido):

   ┌───────────────────────────────────────────────────────────────┐
   │  MOV AX,0B800h                                                │
   │  MOV ES,AX           ; Poe em ES o segmento do vídeo          │
   │  MOV DI,0            ; Começa no Offset 0                     │
   │  MOV AH,7            ; AH = atributo do caracter              │
   │                      ;      7 = cinza com fundo preto         │
   │  MOV AL,' '          ; AL = caracter usado para apagar        │
   │  MOV CX,2000         ; CX = contador (4000 bytes ou           │
   │                      ;      2000 words).                      │
   │  REP STOSW           ; Preenche os 2000 words com AX          │
   └───────────────────────────────────────────────────────────────┘

      O modificador REP diz a instrução que esta deve ser executada CX
  vezes.  Note que a cada execução de STOSW o registrador DI  apontará
  para a proxima word.

      Suponha que queiramos  mover  4000  bytes  de  alguma posição da
  memória para o video, preenchendo a tela com esses 4000 bytes:



   ┌───────────────────────────────────────────────────────────────┐
   │  MOV AX,0B800h                                                │
   │  MOV ES,AX           ; Poe em ES o segmento do vídeo          │
   │  MOV AX,SEG TABELA                                            │
   │  MOV DS,AX           ; Poe em DS o segmento da tabela         │
   │  MOV SI,OFFSET TABELA ; Começa no offset inicial da tabela    │
   │  MOV DI,0            ; Começa no Offset 0                     │
   │  MOV CX,4000         ; CX = contador (4000 bytes)             │
   │  REP MOVSB           ; Copia 4000 bytes de DS:SI para ES:DI   │
   └───────────────────────────────────────────────────────────────┘

    Nota:  O  modificador  REP  só  pode  ser  preceder as seguintes
instruções: MOVSB, MOVSW, STOSB,  STOSW, LODSB, LODSW, CMPSB, CMPSW,
SCASB, SCASW, OUTSB, OUTSW, INSB, INSW.  As instruções nao vistas no
texto acima serão detalhadas mais tarde...

    Existem   mais    algumas    instruções    de   manipulação   de
registradores/dados, bem como mais algumas de manipulação de blocos.
Que ficarão para uma próxima mensagem.





               ┏━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
                RBT   │   Curso de Assembly   │   Aula Nº 05 ┃ ┃
               ┗━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

  Por: Frederico Pissarra

    Depois  de  algumas  instruções  de  movimentação  de  dados vou
mostrar a mecânica da lógica booleana, bem como algumas instruções.

    A lógica booleana  baseia-se  nas  seguintes operações: AND, OR,
NOT.   Para  simplificar  a  minha  digitação  vou  usar  a  notação
simplificada: & (AND), | (OR) e ~ (NOT).  Essa notação  é  usada  na
linguagem C e em muitos manuais relacionados a hardware da IBM.

  Operação AND:➠

    A operação AND funciona de acordo com a seguinte tabela-verdade:

                           ┌───────────┐
                           │ S = A & B │
                           ├───┬───┬───┤
                           │ A │ B │ S │
                           ├───┼───┼───┤
                           │ 0 │ 0 │ 0 │
                           │ 0 │ 1 │ 0 │
                           │ 1 │ 0 │ 0 │
                           │ 1 │ 1 │ 1 │
                           └───┴───┴───┘

    Note que o resultado (S) será 1 apenas se A "E" B forem 1.

    Aplicando esta lógica bit a bit  em  operações  envolvendo  dois
bytes obteremos um terceiro byte que será o primeiro AND o segundo:

 ┌────────────────────────────────────────────────────────────────┐
 │              A = 01010111b       B = 00001111b                 │
 │                                                                │
 │              S = A & B →     01010111b                         │
 │                            & 00001111b                         │
 │                           ─────────────                        │
 │                              00000111b                         │
 └────────────────────────────────────────────────────────────────┘

    Uma das utilidades  de  AND  é  resetar  um  determinado bit sem
afetar os demais.   Suponha  que  queira  resetar  o  bit  3  de  um
determinado  byte.   Para  tanto  basta efetuar um AND do byte a ser
trabalhado com o valor 11110111b (Apenas o bit 3 resetado).

    Eis a sintaxe da instrução AND:

  ┌───────────────────────────────────────────────────────────────┐
  │     AND AL,11110111b                                          │
  │     AND BX,8000h                                              │
  │     AND DL,CL                                                 │
  │     AND [DI],AH                                               │
  └───────────────────────────────────────────────────────────────┘

    Lembrando que o operando destino (o mais a esquerda) deve sempre



ser um  registrador  ou  uma  referencia  a  memória.   o operando a
direita (fonte) pode ser um registrador, uma referência a memória ou
um  valor  imediato,  com  a  restrição  de  que  não  podemos  usar
referências a memória nos dois operandos.

    A  instrução  AND  afeta  os  FLAGS  Z, S e P e zera os flags Cy
(Carry) e O (veja os flags em alguma mensagem anterior a esta).

  Operação OR:➠

                           ┌───────────┐
                           │ S = A | B │
                           ├───┬───┬───┤
                           │ A │ B │ S │
                           ├───┼───┼───┤
                           │ 0 │ 0 │ 0 │
                           │ 0 │ 1 │ 1 │
                           │ 1 │ 0 │ 1 │
                           │ 1 │ 1 │ 1 │
                           └───┴───┴───┘

    Note que S será 1 se A "OU" B forem 1.

    Da  mesma  forma  que  AND,  aplicamos  essa  lógica  bit  a bit
envolvendo  um  byte  ou  word através de uma instrução em assembly.
Vejamos um exemplo da utilidade de OR:

 ┌────────────────────────────────────────────────────────────────┐
 │              A = 01010111b       B = 10000000b                 │
 │                                                                │
 │              S = A | B →     01010111b                         │
 │                            | 10000000b                         │
 │                           ─────────────                        │
 │                              11010111b                         │
 └────────────────────────────────────────────────────────────────┘

    A  operação  OR  é  ideal  para  setarmos um determinado bit sem
afetar os demais.  No exemplo acima  B  tem apenas o bit 7 setado...
depois da operação OR com A o resultado final foi  A  com  o  bit  7
setado! :)

    A  sintaxe  de OR é a mesma que a de AND (obviamente trocando-se
AND por OR). Os flags afetados são os mesmos da instrução AND!

  Operação NOT:➠

    NOT simplesmente inverte todos os bits de um byte ou word:

                           ┌───────────┐
                           │   S = ~A  │
                           ├─────┬─────┤
                           │  A  │  S  │
                           ├─────┼─────┤
                           │  0  │  1  │
                           │  1  │  0  │
                           └─────┴─────┘



    A sintaxe da instrução em assembly é a seguinte:

  ┌───────────────────────────────────────────────────────────────┐
  │     NOT AL                                                    │
  │     NOT DX                                                    │
  │     NOT [SI]                                                  │
  └───────────────────────────────────────────────────────────────┘

  Operação XOR:➠

    A operação XOR é derivada das três acima.   A  equação  booleana
que descreve XOR é:

 ┌────────────────────────────────────────────────────────────────┐
 │  S = (A AND ~B) OR (~A AND B) = A ^ B                          │
 └────────────────────────────────────────────────────────────────┘

    Que na tabela-verdade fica:

                           ┌───────────┐
                           │ S = A ^ B │
                           ├───┬───┬───┤
                           │ A │ B │ S │
                           ├───┼───┼───┤
                           │ 0 │ 0 │ 0 │
                           │ 0 │ 1 │ 1 │
                           │ 1 │ 0 │ 1 │
                           │ 1 │ 1 │ 0 │
                           └───┴───┴───┘

    Uso  o  simbolo  ^ para o XOR aqui.  XOR funciona da mesma forma
que OR, só que o resultado será 1 se APENAS A ou  APENAS  B  for  1,
melhor dizendo: Se ambos forem diferentes.

    XOR é muito útil quando se quer inverter um determinado  bit  de
um byte ou word sem afetar os outros:

 ┌────────────────────────────────────────────────────────────────┐
 │              A = 01010111b       B = 00001111b                 │
 │                                                                │
 │              S = A ^ B →     01010111b                         │
 │                            ^ 00001111b                         │
 │                           ─────────────                        │
 │                              01011000b                         │
 └────────────────────────────────────────────────────────────────┘

    No   exemplo  acima  invertemos  apenas  os  quatro  bits  menos
significativos de A.

    A sintaxe e os flags afetados são os mesmos que AND e OR.





               ┏━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
                RBT   │   Curso de Assembly   │   Aula Nº 06 ┃ ┃
               ┗━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

  Por: Frederico Pissarra

    Instruções aritiméticas  são  o  tópico  de  hoje.   Já discuti,
brevemente,  os  flags  e  os  sistemas  de numeração.  Aqui vai uma
aplicação prática:

  Soma:➠

    A  soma  é  feita através das instruções ADD e ADC.  A diferença
entre elas é que uma faz  a  soma  normalmente e a outra faz a mesma
coisa acrecentando o conteúdo do flag CARRY. Eis a sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  ADD AL,10h                                                     │
 │  ADC AH,22h                                                     │
 │                                                                 │
 │  ADD AX,2210h                                                   │
 └─────────────────────────────────────────────────────────────────┘

    As duas primeiras instruções fazem exatamente a mesma coisa  que
a  terceira.  Note que na primeiria somamos AL com 10h e o resultado
ficará em AL (se  ocorrer  "vai  um"  nesta  soma  o flag CARRY será
setado).   A  segunda  instrução  soma  AH  com  22h  MAIS  o  carry
resultante  da  primeira  instrução  e  o  resultado  ficará  em  AH
(novamente  setando  o  flag  carry  se  houver outro "vai um"!).  A
terceira instrução faz a mesma coisa porque soma 2210h a AX, ficando
o resultado em AX e o possível "vai um" no carry.

    Todos  os  flags  são  afetados  após  a  execução  de  uma  das
instruções de soma, exceto: I, D e Trap.

  Subtração➠

    Semelhante as instruções  de  soma,  existem  duas instruções de
subtração: SUB e SBB.  A  primeira  faz  a  subtração  simples  e  a
segunda  faz  a  mesma  coisa subtraindo também o conteúdo prévio do
flag CARRY (como é uma subtração o CARRY é conhecido como BORROW!).

    A sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  SUB AL,1                                                       │
 │  SBB AH,0                                                       │
 │                                                                 │
 │  SUB AX,1                                                       │
 └─────────────────────────────────────────────────────────────────┘

    Como no exemplo  anterior,  as  duas  primeiras instruções fazem
exatamente o que a terceira faz...  Os flags afetados seguem a mesma
regra das instruções de soma!

  Incremento e decremento:➠



    As instruções INC e DEC são usadas no lugar  de  ADD  e  SUB  se
quisermos incrementar ou decrementar o conteúdo de algum registrador
(ou de uma posição de memória) de uma unidade. A sintaxe é simples:

 ┌───────────────────────────────────────────────────────────────-┐
 │  DEC AX                                                        │
 │  INC BL                                                        │
 └───────────────────────────────────────────────────────────────-┘

    Os  flags afetados seguem a mesma regra de uma instrução de soma
ou uma de subtração!

  Multiplicação:➠

    Os  processadores  da   família   80x86  possuem  instruções  de
multiplicação e divisão  inteiras  (ponto  flutuante fica pro 8087).
Alguns cuidados devem ser tomados quando usarmos  uma  instrução  de
divisão (que será vista mais adiante!).

    Uma   coisa   interessante   com   a   multiplicação  é  que  se
multiplicarmos dois registradores de  16  bits obteremos o resultado
necessariamente em 32 bits.   O  par  de  registradores  DX e AX são
usados para armazenar esse número de 32 bits da seguinte  forma:  DX
será a word mais significativa e AX a menos significativa.

    Por exemplo, se  multiplicarmos  0FFFFh  por  0FFFFh  obteremos:
0FFFE0001h (DX = 0FFFEh e AX = 0001h).

    Eis  a  regra  para  descobrir  o  tamanho  do restultado de uma
operação de multiplicação:

                ┌─────────────────────────────────┐
                │             A * B = M           │
                ├──────────┬───────────┬──────────┤
                │    A     │     B     │     M    │
                ├──────────┼───────────┼──────────┤
                │  8 bits  │   8 bits  │  16 bits │
                │          │           │          │
                │ 16 bits  │  16 bits  │  32 bits │
                └──────────┴───────────┴──────────┘

    A multiplicação sempre ocorrerá entre  o acumulador (AL ou AX) e
um outro operando. Eis a sintaxe das instruções:

 ┌───────────────────────────────────────────────────────────────-┐
 │  MUL BL      ; AX = AL * BL                                    │
 │  IMUL CX     ; DX:AX = AX * CX                                 │
 └───────────────────────────────────────────────────────────────-┘

    A primeira instrução (MUL) não considera o sinal dos  operandos.
Neste  caso, como BL é de 8 bits, a multiplicação se dará entre BL e
AL e o resultado será armazenado em AX.

    A segunda instrução leva  em  consideração o sinal dos operandos
e, como CX é de 16 bits, a multiplicação se dará entre CX e AX  e  o
restultado  será armazenado em DX e AX.  Lembrando que o sinal de um
número inteiro depende do seu bit mais significativo!



  Divisão:➠

    Precisamos tomar cuidado com a  divisão pelo seguinte motivo: Se
o resultado não couber no  registrador destino, um erro de "Division
by zero" ocorrerá  (isto  não  está  perfeitamente  documentado  nos
diversos  manuais  que li enquanto estudava assembly 80x86...  Vim a
descobrir este 'macete' numa  antiga  edição  da revista PC MAGAZINE
americana).  Outro cuidado é com o divisor...  se for 0 o mesmo erro
ocorrerá!

    A  divisão  pode ser feita entre um número de 32 bits e um de 16
ou entre um de 16 e um de 8, veja a tabela:

                ┌────────────────────────────────┐
                │        A ÷ B = Q e resto       │
                ├──────────┬───────────┬─────────┤
                │    A     │     B     │Q e resto│
                ├──────────┼───────────┼─────────┤
                │ 32 bits  │  16 bits  │ 16 bits │
                │          │           │         │
                │ 16 bits  │   8 bits  │  8 bits │
                └──────────┴───────────┴─────────┘

    Assim como na multiplicação  o  número  (dividendo) de 32 bits é
armazenado em DX e AX.

    Depois da divisão o quociente é armazenado em AL e o resto em AH
(no caso de divisão 16/8 bits) ou o quociente fica em AX e  o  resto
em DX (no caso de divisão 32/8 bits).

    Exemplo da sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  DIV CX      ; AX = DX:AX ÷ CX, DX = resto                      │
 │  IDIV BL     ; AL = AX ÷ BL, AH = resto                         │
 └─────────────────────────────────────────────────────────────────┘

    O  primeiro  caso é uma divisão sem sinal e o segundo com sinal.
Note os divisores (CX e BL no nosso exemplo).

    Na divisão 16/8 bits o dividendo é armazenado  em  AX  antes  da
divisão... No caso de 32/8 bits DX e AX são usados...

    Mais  um  detalhe:  Os  flags,  depois  de  uma multiplicação ou
divisão não devem ser considerados.
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  Por: Frederico Pissarra

    Algumas instruções afetam  somente  aos  flags.  Dentre elas, as
mais utilizadas são as instruções de comparação entre dois dados.

  Comparações aritiméticas:➠

    A  instrução  CMP  é  usada  quando se quer comparar dois dados,
afetando somente aos flags.  Eis a sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  CMP AL,1Fh                                                     │
 │  CMP ES:[DI],1                                                  │
 │  CMP AX,[SI]                                                    │
 └─────────────────────────────────────────────────────────────────┘

    Esta  instrução faz a subtração entre o operando mais a esquerda
e o mais a direita, afetando  somente  os flags.  Por exemplo, se os
dois operandos  tiverem  valores  iguais  a  subtração  dará valores
iguais e o flag de ZERO será 1. Eis a mecânica de CMP:

 ┌─────────────────────────────────────────────────────────────────┐
 │  CMP AL,1Fh   ; AL - 1Fh, afetando somente os Flags             │
 └─────────────────────────────────────────────────────────────────┘

  Comparações lógicas:➠

    A instrução TEST é usada quando se quer  comparar  o  estado  de
determinados bits de um operando. Eis a sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  TEST AL,10000000b                                              │
 │  TEST [BX],00001000b                                            │
 └─────────────────────────────────────────────────────────────────┘

    Esta  instrução faz um AND com os dois operados, afetando apenas
os flags.  Os flags Z, S  e  P  são  afetados,  os flags O e C serão
zerados.

  Instruções que mudam o estado dos flags diretamente:➠

    CLC - Abreviação de CLear Carry (Zera o flag Carry).
    CLD - Abreviação de CLear Direction (Ajusta flag de  direção  em
          zero,  especificando  o sentido correto para instruções de
          bloco).
    CLI - Abreviação   de  CLear   Interrupt   (Mascara   flag    de
          interrupção,   não  permitindo  que  a  CPU  reconheça  as
          interrupções mascaráveis).
    CMC - Abreviação de CoMplement Carry (Inverte o flag de carry).
    STC - Abreviação de SeT Carry (Faz carry = 1).
    STD - Abreviação  de  SeT  Direction  (flag  de direção setado -
          indica que as instruções de bloco  incrementarão  os  seus
          pointers no sentido contrário - de cima para baixo).
    STI - Abreviação  de  SeT Interrupt (Faz com que a CPU volte a
          reconhecer as interrupções mascaráveis).



    Uma  interrupção  é  um  "desvio"  feito  pela  CPU  quando   um
dispositivo  requer  a  atenção  da mesma.  Por exemplo, quando você
digita uma tecla, o circuito do  teclado requisita a atenção da CPU,
que  por  sua  vez,  para  o  que  está fazendo e executa uma rotina
correspondente à  requisição  feita  pelo  dispositivo  (ou  seja, a
rotina da interrupção).  Ao final da rotina, a CPU retorna à  tarefa
que  estava  desempenhando  antes da interrupção.  Nos PCs, TODAS as
interrupções  são  mascaráveis  (podem  ser  ativadas  e desativadas
quando  quisermos),  com a única excessão da interrupçao de checagem
do sistema (o famoso MEMORY PARITY ERROR é um exeplo!).
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  Por: Frederico Pissarra

    Veremos agora as instruções de controle de fluxo de programa.

    A CPU sempre executa instruções em  sequência,  a  não  ser  que
encontre instruções que "saltem" para outra posição na memória.

    Existem  diversas  formas   de   "saltar"  para  um  determinado
endereço:

  Salto incondicional:➠

    A instrução JMP simplesmente salta  para onde se quer.  Antes de
apresentar a sintaxe, um  detalhe  sobre  codificaçao: O operando da
instrução JMP é um endereço na memória, mas, como usaremos sempre um
compilador assembly, necessitamos criar um "rotulo" ou "label"  para
onde  o  salto  será  efetuado...   O compilador trata de calcular o
endereço pra gente.

    Eis a sintaxe de JMP:

 ┌─────────────────────────────────────────────────────────────────┐
 │      JMP Aqui2                                                  │
 │ Aqui1:                                                          │
 │      JMP Aqui3                                                  │
 │ Aqui2:                                                          │
 │      JMP Aqui1                                                  │
 │ Aqui3:                                                          │
 └─────────────────────────────────────────────────────────────────┘

    Os "labels" são sempre seguidos de dois-pontos.  Note, no pedaço
de código acima, a quebra da sequência de execução.

  Salto incondicional:➠

    Diferente de JMP, temos instruções que realizam um salto somente
se uma condição  for  satisfeita.   Para  isso,  usa-se os flags.  A
sintaxe dessas instruções depende da condição do flag  que  se  quer
testar. Eis a listagem dessas instruções:

    - JZ "label"  → Salta se flag Z=1
    - JNZ "label" → Salta se flag Z=0
    - JC "label"  → Salta se flag C=1
    - JNC "label" → Salta se flag C=0
    - JO "label"  → Salta se flag O=1
    - JNO "label" → Salta se flag O=0
    - JPO "label" → Salta se flag P=0 (paridade impar)
    - JPE "label" → Salta se flag P=1 (paridade par)
    - JS "label"  → Salta se flag S=1
    - JNS "label" → Salta se flag S=0

    Existem  ainda mais saltos condicionais para facilitar a vida do
programador:



    - JE "label"  → Jump if Equal (mesmo que JZ)
    - JNE "label" → Jump if Not Equal (mesmo que JNZ)
    - JA "label"  → Jump if Above (salta se acima)
    - JB "label"  → Jump if Below (salta se abaixo)
    - JAE "label" → Jump if Above or Equal (salta se acima ou =)
    - JBE "label" → Jump if Below of Equal (salta se abaixo ou =)
    - JG "label"  → Jump if Greater than (salta se >)
    - JL "label"  → Jump if Less than (salta se <)
    - JGE "label" → Jump if Greater than or Equal (salta se >=)
    - JLE "label" → Jump if Less or Equal (salta se <=)

    A diferença entre JG e JA, JL e JB é:

    - JA e JB são relativos a comparações sem sinal.
    - JG e JL são relativos a comparações com sinal.

    Os  saltos  condicionais  têm  uma  desvantagem  com relação aos
saltos incondicionais: O deslocamento é relativo a posição corrente,
isto é, embora no nosso código o salto se dê na posição do "label" o
assembler traduz esse salto para  uma  posição "x" bytes para frente
ou para tras em relação a posição da instrução de salto...   e  esse
número  "x"  está  na  faixa de -128 a 127 (traduzindo isso tudo pra
quem não entendeu: Não é possível saltos muito longos com instruções
de salto condicionais...   salvo  em  casos especiais que explicarei
mais tarde!).

    Existe ainda a  instrução  JCXZ.   Essa  instrução  salta  se  o
registrador CX for 0.

    Mais uma instrução: LOOP

    A  instrução  LOOP  salta  para  um  determinado  endereço  se o
registrador CX for diferente de zero e, antes de saltar,  decrementa
CX. Um exemplo do uso desta instrução:

 ┌─────────────────────────────────────────────────────────────────┐
 │      SUB AL,AL       ;AL = 0                                    │
 │      SUB DI,DI       ;DI = 0                                    │
 │      MOV CX,1000     ;CX = 1000                                 │
 │  Loop1:                                                         │
 │      MOV BYTE PTR ES:[DI],0  ;Poe 0 em ES:DI                    │
 │      INC DI          ;Incrementa o offset (DI)                  │
 │      LOOP Loop1      ;Repete ate' que CX seja 0                 │
 └─────────────────────────────────────────────────────────────────┘

    Essa  rotina  preenche  os  1000 bytes a partir de ES:0 com 0. O
modificador "BYTE PTR" na frente de ES:[DI] resolve uma ambiguidade:
Como podemos saber se a  instrução "MOV ES:[DI],0" escreverá um byte
ou um word?  Por default, o compilador assume word, por  isso  temos
que usar o modificador indicando que queremos byte.

    Repare que o pedaço entre "Loop1" e o final da rotina equivale a
uma instrução "REP STOSB".

    Podemos também especificar uma instrução LOOP condicional, basta
acrescentar  'Z'  ou  'NZ'  (ou os equivalentes 'E' ou 'NE') no fim.
Isto quer dizer: Salte  ENQUANTO  CX  for  ZERO  (Z) ou N─O for ZERO
(NZ).  A instrução LOOP sem condição é a mesma coisa que  LOOPNZ  ou
LOOPNE!



  Chamadas a sub-rotinas:➠

    A instrução CALL funciona como se fosse  a  instrução  GOSUB  do
velho BASIC.  Ela  salta  para  a  posição  especificada  e quando a
instrução RET for encontrada na sub-rotina a CPU salta de volta para
a próxima instrução que segue o CALL. A sintaxe:

 ┌─────────────────────────────────────────────────────────────────┐
 │  CALL "label"                                                   │
 └─────────────────────────────────────────────────────────────────┘

    Eis um exemplo:

 ┌─────────────────────────────────────────────────────────────────┐
 │      MOV AL,9        ;Poe numero em AL                          │
 │      CALL ShowNumber ;Salta para a subrotina                    │
 │      ...                                                        │
 │                                                                 │
 │  ShowNumber:                                                    │
 │      ...                                                        │
 │      RET     ;Retorna                                           │
 └─────────────────────────────────────────────────────────────────┘
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  Por: Frederico Pissarra

    O assunto de  hoje  é  INTERRUPÇÕES.   Como  já disse antes, uma
interrupção é uma requisição da atenção da CPU  por  um  dispositivo
(por  exemplo  o  teclado,  quando  apertamos  uma  tecla!).   A CPU
INTERROMPE o processamento normal e  salta para a rotina que "serve"
a interrupção requisitada, retornando ao ponto em que  estava  ANTES
da  interrupção  quando  finalizar  a  rotina de interrupção.  Assim
funciona a nível de hardware.

    A novidade nos processadores INTEL  da série 80x86 é que existem
instruções assembly que  EMULAM  a  requisição  de  uma  interrução.
Essas  instruções  nada  mais  são  que  um  "CALL", mas ao invés de
usarmos um endereço para  uma  subrotina,  informamos o índice (ou o
código) da interrupção requisitada e a CPU se comportará como se  um
dispositivo tivesse requisitado a interrupção...

    As  rotinas  do DOS e da BIOS são chamadas por essas instruções.
Na realidade,  este  artificio  da  família  INTEL  facilita muito o
trabalho dos programadores  porque  não  precisamos  saber  onde  se
encontram  as  rotinas  da  BIOS  e do DOS na memória...  Precisamos
saber apenas o índice da  interrupção  de cada uma das rotinas...  o
endereço a CPU calcula para nós!

    Eis a sintaxe da instrução:

 ┌──────────────────────────────────────────────────────────────────┐
 │  INT 21h                                                         │
 │  INT 10h                                                         │
 └──────────────────────────────────────────────────────────────────┘

    Onde 21h e 10h são índices.

    A CPU sabe para onde saltar porque no inicio da memória de  todo
PC   tem   uma   tabela   conhecida  como  "Tabela  dos  vetores  de
interrupção".  A CPU, de posse do índice na instrução INT, "pega"  o
endereço  correspondente a esse índice nessa tabela e efetua um CALL
diferente (porque  o  fim  de  uma  rotina  de  interrupção  tem que
terminar em IRET e  não  em  RET  -  IRET  é  o  RET  da  rotina  de
interrupção - Interrupt RETurn).

    Por exemplo...  Se precisamos abrir um  arquivo,  o  trabalho  é
enviado  ao  DOS pela interrupçao de indice 21h.  Se queremos ler um
setor do disco, usamos a interrupçao de indice 13h, etc...  Mas, nao
use a instruçao INT  sem  saber  exatamente  o que está fazendo, ok?
Pode ter resultados desastrosos!

    Uma  descrição  da  maioria   das   interrupções   de   software
disponíveis  nos  PCs  compatíveis está disponível no livro "Guia do
programador para PC e PS/2"  de  Peter Norton (recomendo a aquisição
deste livro!  De preferencia a  versao americana!).  Ou, se preferir
"literatura eletronica" recomendo  o  arquivo  HELPPC21.ZIP  (v2.1),
disponivel  em qualquer bom BBS...  Ainda assim pedirei para o RC do
ES (RBT) para disponibiliza-lo para  FREQ aos Sysops interessados em
adquiri-lo.



    Quanto as interruções  de  hardware  (as  famosas  IRQs!)...   é
assunto  meio  complexo  no  momento e requer um bom conhecimento de
eletronica digital  e  do  funcionamento  do  micrprocessador...  no
futuro (próximo, espero!) abordarei esse assunto.
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  Por: Frederico Pissarra

    Mais  instruções  lógicas...   Falta-nos  ver  as  intruções  de
deslocamento de bits: SHL, SHR, SAL, SAR, ROL, ROR, RCL e RCR.

    A última letra  nas  instruções  acima  especifica  o sentido de
rotação (R = Right → direita, L = Left → esquerda).

    Para exemplificar a mecânica do funcionamento dessas  instruções
recorrerei a graficos (fica mais fácil assim).

  ┏━━━━━━━━━━━┓
   SHL e SHR ┃ ┃
  ┗━━━━━━━━━━━┛

        SHL:

      ┌─────┐     ┌──────────────────┐
      │Carry│←─── │                  │←──── 0
      └─────┘     └──────────────────┘
                 msb                lsb

        SHR:
                 ┌──────────────────┐     ┌─────┐
           0 ───→│                  │────→│Carry│
                 └──────────────────┘     └─────┘
                 msb                lsb

    SHR e SHL fazem o deslocamento dos bits em direção ao flag Carry
e  acrescentam  0  no  lugar  do último bit que foi deslocado.  Essa
operação tem o mesmo efeito  de  multiplicar  por 2 (SHL) ou dividir
por 2 (SHR) um valor.  Com a vantagem  de  não  gastar  tanto  tempo
quanto as instruções DIV e MUL.

    SHR é a abreviação de  SHift  Right,  enquando  SHL é a de SHift
Left.

  ┏━━━━━━━━━━━┓
   SAL e SAR ┃ ┃
  ┗━━━━━━━━━━━┛

    SAL funciona da mesma maneira que SHL.

        SAR: ┌─────┐
             │   ┌──────────────────┐     ┌─────┐
             └──→│                  │────→│Carry│
                 └──────────────────┘     └─────┘
                 msb                lsb

    SAR  desloca todos os bits para a direita (o lsb vai para o flag
carry) e repete o conteúdo do antigo último bit (que foi deslocado).

    SAR  é  a  abreviação  de  SHift  Arithmetic  Right.   Sendo  um



deslocamento aritimético, não  poderia  de  desconsiderar o sinal do
dado deslocado (dai o motivo de repetir o bit mais significativo!).

  ┏━━━━━━━━━━━┓
   RCL e RCR ┃ ┃
  ┗━━━━━━━━━━━┛

        RCL:
           ┌──────────────────────────────────────┐
           │                                      │
           │    ┌─────┐    ┌──────────────────┐   │
           └───-│Carry│←───│                  │←──┘
                └─────┘    └──────────────────┘
                           msb                lsb

        RCR:
            ┌────────────────────────────────────┐
            │                                    │
            │  ┌──────────────────┐     ┌─────┐  │
            └-→│                  │────→│Carry├──┘
               └──────────────────┘     └─────┘
               msb                lsb

    RCR  e  RCL  rotacionam  o  dado  "passando  pelo  carry".  Isto
significa que o bit  menos  significativo  (no  caso  de  ROR)  será
colocado  no  flag  de carry e que o conteúdo antigo deste flag será
colocado no bit mais significativo do dado.

  ┏━━━━━━━━━━━┓
   ROL e ROR ┃ ┃
  ┗━━━━━━━━━━━┛

        ROL:
                         ┌────────────────────────┐
                         │                        │
                ┌─────┐  │ ┌──────────────────┐   │
                │Carry│←───│                  │←──┘
                └─────┘    └──────────────────┘
                           msb                lsb

        ROR:
            ┌────────────────────────┐
            │                        │
            │  ┌──────────────────┐  │  ┌─────┐
            └─→│                  │────→│Carry│
               └──────────────────┘     └─────┘
               msb                lsb

    Aqui a rotaçao e' feita  da  maneira correta...  o flag de carry
apenas indica o ultimo bit que "saiu" e foi para o outro lado...

    A sintaxe dessas instruções é a seguinte:



 ┌─────────────────────────────────────────────────────────────────┐
 │  SHL AX,1                                                       │
 │  SHR BL,1                                                       │
 │  RCL DX,CL                                                      │
 │  ROL ES:[DI],CL                                                 │
 └─────────────────────────────────────────────────────────────────┘

    Note que o segundo operando é  um contador do número de rotações
ou shifts serão efetuadas.  Nos microprocessadores 80286  em  diante
pode-se usar um valor diferente de 1, no 8088/8086 não pode!

    Repare  também  que  podemos  usar  APENAS o registrador CL como
operando da direita se quisermos usar algum registrador!
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  Por: Frederico Pissarra

    Mais instruções de comparação...

  CMPSB e CMPSW➠

    Essas instruções comparam (da mesma forma que CMP) o conteúdo da
memória apontada  por  DS:SI  com  o  conteúdo  apontado  por ES:DI,
afetando os flags.  Com isso, soluciona-se a limitação da  instrução
CMP com relação aos dois operandos como referências à memória!

    Lembre-se que DS:SI é o operando implicito FONTE, enquanto ES:DI
é  o  destino.   A comparação é feita de ES:DI para DS:SI.  A rotina
abaixo é equivalente  a  CMPSB:

 ┌─────────────────────────────────────────────────────────────────┐
 │  MOV AL,ES:[DI]                                                 │
 │  CMP AL,[SI]                                                    │
 │  INC SI                                                         │
 │  INC DI                                                         │
 └─────────────────────────────────────────────────────────────────┘

    Existe um pequenino erro de lógica na rotina  acima,  mas  serve
aos nossos propósitos de ilustrar o que ocorre em CMPSB.

    SI  e  DI serão incrementados (ou decrementados, depende do flag
de direção)  depois  da  operação,  e  o  incremento (ou decremento)
dependerá da instrução...  Lembre-se que CMPSB compara Bytes e CMPSW
compara Words.

  SCASB e SCASW➠

    Essas  instruções servem para comparar (da mesma forma que CMP o
faz) o conteúdo da memória  apontado  por DS:SI com o registrador AL
(no caso de SCASB) ou AX (no caso de SCASW).  Os flags são  afetados
e SI é incrementado (ou decrementado)  de  acordo  com  a  instrução
usada.

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
 Comparando blocos de memória:                                    ┃ ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

    Podemos usar CMPS?  e SCAS?  (onde ?  e' B ou W) em conjunto com
REP  para  compararmos blocos (CMPS?) ou procurar por um determinado
dado num bloco (SCAS?).  A diferença aqui é que podemos fornecer uma
condição de comparação ou busca.

    Acrescentando o modigicador REP,  precisamos  dizer à uma dessas
instruções a quantidades de dados que queremos manipular...  fazemos
isso através do registrador CX (assim  como  fizemos  com  LODS?   e
STOS?):



 ┌────────────────────────────────────────────────────────────────┐
 │  ;Certifica-se do sentido crescente!                           │
 │  CLD                                                           │
 │                                                                │
 │  ;Obtém o segmento da linha de comando e coloca em DS          │
 │  MOV   AX,SEG LINHA_DE_COMANDO                                 │
 │  MOV   DS,AX                                                   │
 │                                                                │
 │  ;Obtém o offset inicial da linha de comando                   │
 │  MOV   SI,OFFSET LINHA_DE_COMANDO                              │
 │                                                                │
 │  ;Procura, no máximo por 128 bytes                             │
 │  MOV   CX,128                                                  │
 │                                                                │
 │  ;Procuraremos por um espaço.                                  │
 │  MOV   AL,' '                                                  │
 │                                                                │
 │  REPNE SCASB                                                   │
 └────────────────────────────────────────────────────────────────┘

    Esse  fragmento  de código ilustra o uso de SCASB com blocos.  O
modificador  REPNE  significa  (REPete  while  Not  Equal  -  Repete
enquanto não for igual).  REPNE garante que o byte vai ser procurado
por  toda  a  linha  de  comando  até  que  o  primeiro  espaço seja
encontrado.  Se não houver espaços na linha, então,  depois  de  128
bytes  de  procura,  o  registrador  CX  estará  zerado  (já  que  é
decrementado a cada byte comparado).

    Esta  é outra característica das instruções que manipulam blocos
(as que  são  precedidas  de  REP,  REPNE  ou  REPE):  O  contador é
decrementado a cada operação da instrução associada (no  nosso  caso
SCASB), bem como os demais operandos implicitos (SI no caso acima) é
incrementado a cada passo.

    Se  quisermos  encontrar  o primeiro byte DIFERENTE de espaço na
rotina acima,  basta  trocar  REPNE  por  REPE  (Repete enquanto for
IGUAL).

    REPE e REPNE não foram mencionados antes  porque  não  funcionam
com LODS? e STOS?.
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  Por: Frederico Pissarra

    A  partir  de  agora  veremos,  resumidamente,  como desenvolver
funções/procedures em assembly no mesmo código PASCAL.

    O  TURBO  PASCAL  (a  partir  da  versao  6.0)  fornece  algumas
palavras-chave dedicadas à  construção  de  rotinas assembly in-line
(esse recurso é chamado de BASM nos manuais do TURBO PASCAL - BASM é
a abreviação de Borland ASseMbler).

    Antes de começarmos a  ver  o  nosso primeiro código em assembly
vale a pena ressaltar  alguns  cuidados  em relação a codificação de
rotinas assembly em TURBO PASCAL...  As nossas rotinas devem:

     Preservar sempre o conteúdo dos registradores DS, BP e SP.➠
     Nunca modificar, diretamente, o conteúdo dos registradores CS,➠
      IP e SS.

    O motivo dessas restrições é que os registradores BP,  SP  e  SS
são  usados  na  obtenção  dos  valores  passados  como parametros à
função/procedure e na localização  das variaveis globais na memória.
O registrador DS é usado por todo o código PASCAL  e  aponta  sempre
para  o  segmento  de  dados  corrente  (o  qual não sabemos onde se
encontra...  deixe que o código PASCAL tome conta disso!).

    Com relação ao conteúdo de CS  e  IP, não é uma boa prática (nem
mesmo em códigos assembly puros) alterar o seus valores.  Deixe  que
as  instruções  de  salto  e  chamada  de  subrotinas façam isso por
você!).

    Os  demais  registradores  podem  ser  alterados a vontade.

    A função HexByte()  abaixo  é  um  exemplo  de função totalmente
escrita em assembly...  Ela toma  um  valor  de 8 bits e devolve uma
string de 2 bytes contendo o valor hexadecimal desse parametro:



 ┌────────────────────────────────────────────────────────────────┐
 │  FUNCTION    HexByte(Data : Byte) : String; ASSEMBLER;         │
 │  ASM                                                           │
 │      LES     DI,@Result   { Aponta para o inicio da string. }  │
 │                                                                │
 │      MOV     AL,2         { Ajusta tamanho da string em 2.  }  │
 │      STOSB                                                     │
 │                                                                │
 │      MOV     AL,Data      { Pega o dado a ser convertido.   }  │
 │                                                                │
 │      MOV     BL,AL        { Salva-o em BL.                  }  │
 │      SHR     AL,1         { Para manter compatibilidade com }  │
 │      SHR     AL,1         { os microprocessadores 8088/8086 }  │
 │      SHR     AL,1         { nao é prudente usar SHR AL,4.   }  │
 │      SHR     AL,1                                              │
 │      ADD     AL,'0'       { Soma com ASCII '0'.             }  │
 │      CMP     AL,'9'       { Maior que ASCII '9'?            }  │
 │      JBE     @NoAdd_1     { ... Nao é, então nao soma 7.    }  │
 │      ADD     AL,7         { ... É, então soma 7.            }  │
 │  @NoAdd_1:                                                     │
 │      MOV     AH,AL        { Salva AL em AH.                 }  │
 │                                                                │
 │      MOV     AL,BL        { Pega o valor antigo de AL em BL.}  │
 │      AND     AL,1111B     { Zera os 4 bits superiores de AL.}  │
 │      ADD     AL,'0'       { Soma com ASCII '0'.             }  │
 │      CMP     AL,'9'       { Maior que ASCII '9'?            }  │
 │      JBE     @NoAdd_2     { ... Nao é, então nao soma 7.    }  │
 │      ADD     AL,7         { ... É, então soma 7.            }  │
 │  @NoAdd_2:                                                     │
 │                                                                │
 │      XCHG    AH,AL        { Trocar AH com AL para gravar na }  │
 │      STOSW                { ordem correta.                  }  │
 │  END;                                                          │
 └────────────────────────────────────────────────────────────────┘

    A primeira linha é a declaração da função  seguida  da  diretiva
ASSEMBLER  (informando  que a função TODA foi escrita em assembly!).
A seguir a palavra-chave ASM  indica  o inicio do bloco assembly até
que END; marque o fim da função...

    A primeira linha do código assembly é:

 ┌────────────────────────────────────────────────────────────────┐
 │      LES     DI,@Result                                        │
 └────────────────────────────────────────────────────────────────┘

    Quando retornamos uma string  numa  função precisamos conhecer o
endereço do  inicio  dessa  string.   A  variável  @Result contém um
pointer que aponta para o inicio da string que será  devolvida  numa
função.  Esse endereço é sempre um endereço FAR (ou seja, no formato
SEGMENTO:OFFSET).

    A seguir inicializamos o tamanho da string em 2 caracteres:

 ┌────────────────────────────────────────────────────────────────┐
 │      MOV     AL,2                                              │
 │      STOSB                                                     │
 └────────────────────────────────────────────────────────────────┘



    Note  que STOSB vai gravar o conteúdo de AL no endereço apontado
por ES:DI, ou seja, o endereço  apontado por @Result, e logo após DI
é incrementado, apontando para a primeira posição valida da string.

    O método  que  usei  para  gerar  uma  string  hexadecimal  é  o
seguinte:

    - Pegamos o parametro 'Data' e colocamos em AL.
    - Salva-se o conteúdo de AL em BL para que possamos obter  os  4
      bits menos significativos sem termos que ler 'Data' novamente!
    - Com AL fazemos:
        - Desloca-se AL 4  posiçoes  para  a direita, colocando os 4
          bits mais significativos  nos  4  menos  significativos  e
          preenchendo os 4 mais significativos com 0B.
     (a)- Soma-se o valor do ASCII '0' a AL.
     (b)- Verifica-se se o  resultado é maior que o ASCII '9'.
            - Se for, somamos 7.
        - Salvamos o conteúdo  de  AL  em  AH.
    - Recuperamos o valor antigo de AL que estava em BL.
    - Com AL fazemos:
        - Zeramos os 4 bits mais significativos para obtermos apenas
          os 4 menos significativos em AL.
        - Repetimos (a) e (b)
    - Trocamos AL com AH e gravamos AX  com STOSB

    A primeira pergunta é: Porque somar 7 quando o resultado da soma
com o ASCII '0' for  maior  que  o  ASCII  '9'?  A resposta pode ser
vista no pedaço da tabela ASCII abaixo:

 ┌────────────────────────────────────────────────────────────────┐
 │         0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F          │
 │                            └ ┘                     │┈┈┈┈┈┈┈┈┈┈┈┈┈
 │                        E esses 7 caracteres ?                  │
 └────────────────────────────────────────────────────────────────┘

    Observe  que  depois  do ASCII '9' segue o ASCII ':' ao invés do
ASCII 'A', como é desejado...  Entao,  se  o resultado da soma dos 4
bits menos signficativos (que varia de 0000B até 1111B - ou de  0  a
15) com o ASCII '0' for maior que o ASCII '9' precisamos compensar a
existencia dos 7 caracteres indesejáveis!

    Imagine que AL seja 0. Somando o  ASCII  '0'  (que  equivale  ao
número 30h) a AL obteriamos:

 ┌────────────────────────────────────────────────────────────────┐
 │  AL = 0010B = 2h                                               │
 │  AL = 2h + '0'                                                 │
 │  AL = 2h + 30h                                                 │
 │  AL = 32h = '2'                                                │
 └────────────────────────────────────────────────────────────────┘

    Imagine  agora  que  AL  seja  1011B.   Fazendo as mesmas contas
obteriamos AL = 3Bh  (que  é  a  mesma  coisa  que  o ASCII ';'.  No
entando, 3Bh é maior que o ASCII '9' (ou seja, 39h)... Então:



 ┌────────────────────────────────────────────────────────────────┐
 │  AL = ';' = 3Bh                                                │
 │  AL = 3Bh + 7h                                                 │
 │  AL = 42h = 'B'                                                │
 └────────────────────────────────────────────────────────────────┘

    A outra coisa que você poderia me perguntar é o porque eu usei a
instrução  XCHG  AH,AL  no final do código.  A resposta é simples...
Os microprocessadores da INTEL  gravam  words na memória da seguinte
maneira:

 ┌────────────────────────────────────────────────────────────────┐
 │  Word = FAFBh                                                  │
 │  Na memória: FBh FAh                                           │
 └────────────────────────────────────────────────────────────────┘

    Não  importa  se o seu computador seja um Pentium ou um XT...  A
memória  é  sempre dividida em BYTES.  A CPU apenas "le" um conjunto
maior de bytes de acordo com  a  quantidade de bits da sua CPU.  Por
exemplo, os microprocessadores 8086 e 80286 são CPUs de  16  bits  e
por isso conseguem ler 2 bytes (8 bits + 8 bits = 16 bits) de uma só
vez...  As CPUs 386 e 486 são de 32 bits e podem ler de uma só vez 4
bytes!

    Esse  conjunto  de  bytes  que  a  CPU  pode  enxergar  é sempre
armazenado da forma contrária  do  que  os  olhos humanos leem...  O
byte menos significativo SEMPRE vem ANTES do mais significativo.  No
caso de um DOUBLEWORD (ou numero de 32 bits de tamanho) o formato  é
o mesmo... Exemplo:

 ┌────────────────────────────────────────────────────────────────┐
 │  Número = FAFBFCFDFEh                                          │
 │  Na memória: FE FD FB FA                                       │
 └────────────────────────────────────────────────────────────────┘

    Analizando  a rotina HexByte() a gente ve que AH tem o byte mais
significativo  e   AL   o   menos   significativo.    Como  o  menos
significativo vem sempre antes do mais significativo fiz a troca  de
AH com AL para que o número HEXA seja armazenado de forma correta na
memória  (string).  Um exemplo: Suponha que o você passe o valor 236
à função HexByte():

 ┌────────────────────────────────────────────────────────────────┐
 │  Valor = 236 ou ECh                                            │
 │  Até antes de XCHG AH,AL:    AH = ASCII 'E'                    │
 │                              AL = ASCII 'C'                    │
 └────────────────────────────────────────────────────────────────┘

    Se  não  tivessemos  a   instrução  XCHG  AH,AL  e  simplesmente
usassemos o STOSW (como está no código!) AH seria precedido de AL na
memória (ou na string!),  ficariamos  com  uma  string 'CE'!  Não me
lembro  se  já  falei  que  o  L  de  AL  significa  LOW  (ou  menos
significativo!) e H de AH significa HIGH  (ou  mais  significativo),
portanto  AL  e  AH  são,  respectivamente,  os  bytes  menos e mais
significativos de AX!

    Não se importe em coloca um RET ao fim da função, o TURBO PASCAL
coloca isso sozinho...



    Você deve estar se perguntando porque não fiz a rotina de  forma
tal  que  a troca de AH por AL não fosse necessária...  Well...  Fiz
isso pra ilustrar a  forma  como  os  dados são gravados na memória!
Retire XCHG AH,AL do código e veja o que  acontece!   Um  outro  bom
exercício  é  tentar  otimizar  a  rotina  para que a troca não seja
necessária...

    E...  para fechar  a  rotina,  podemos aproveitar HexByte() para
construir HexWord():

 ┌────────────────────────────────────────────────────────────────┐
 │  Function HexWord(Data : Word) : String;                       │
 │  Var H, L : String;                                            │
 │  Begin                                                         │
 │      H := HexByte(HIGH(Data));                                 │
 │      L := HexByte(LOW(Data));                                  │
 │      HexWord := H + L;                                         │
 │  End;                                                          │
 └────────────────────────────────────────────────────────────────┘

    HexDoubleWord() eu deixo por sua conta.

    Aguardo as suas duvidas...
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  Por: Frederico Pissarra

    Algumas pessoas,  depois  de  verem  o  código-exemplo  do texto
anterior, desenvolvido  para  ser  compilado  em  TURBO  PASCAL,  me
perguntaram:  "E quanto ao C?!".  Well...  aqui vão algumas técnicas
para codificação mixta em C...

    Antes de começarmos a dar uma olhada nas técnicas, quero  avisar
que  meu  compilador preferido é o BORLAND C++ 3.1.  Ele tem algumas
características que não estão presentes  do  MicroSoft C++ 7.0 ou no
MS Visual C++!  Por  exemplo,  O  MSC++  ou  o MS-Visual C++ não tem
"pseudo"-registradores (que ajudam um  bocado  na mixagem de código,
evitando os "avisos" do compilador).

    Mesmo com algumas diferenças, você poderá usar as técnicas  aqui
descritas...  As regras podem ser usadas  para  qualquer  compilador
que não gere aplicações em modo protegido para o MS-DOS.

  Regras para a boa codigificação assembly em C➠

    Assim como no TURBO PASCAL, devemos:

        * Nunca alterar CS, DS, SS, SP, BP e IP.
        * Podemos alterar com muito cuidado ES, SI e DI
        * Podemos alterar sempre que quisermos AX, BX, CX, DX

    O registrador DS  sempre  aponta  para  o  segmento  de dados do
programa...  Se a sua função assembly acessa alguma variável global,
e você tiver alterado DS, a  variável  que  você  pretendia  acessar
não estará disponível!  Os registradores SS, SP e BP são usados pela
linguagem  para  empilhar  e  desempilhar  os parametros e variáveis
locais da função na  pilha...   altera-los pode causar problemas!  O
par de registradores CS:IP nao deve ser  alterado  porque  indica  a
próxima  posição  da  memória  que contém uma instrução assembly que
será executada...  Em qualquer  programa "normal" esses últimos dois
registradores são deixados em paz.

    No caso dos registradores ES, SI e DI, o compilador  os  usa  na
manipulação  de  pointers  e  quando precisa manter uma variável num
registrador  (quando  se  usa   a  palavra-reservada  "register"  na
declaração de uma variável, por exemplo!).   Dentro  de  uma  função
escrita puramente em assembly, SI e DI podem ser alterados a vontade
porque  o compilador trata de salva-las na pilha (via PUSH SI e PUSH
DI) e, ao término da função, as  restaura  (via POP DI e POP SI).  A
melhor  forma  de  se  saber  se  podemos  ou  não  usar  um  desses
registradores em um código mixto é compilando o programa  e  gerando
uma listagem assembly (no BORLAND C++ isso é feito usando-se a chave
-S  na  linha  de comando!)...  faça a análize da função e veja se o
uso  desses  registradores  vai  prejudicar  alguma  outra  parte do
código!

    Se você não quer ter essa dor de cabeça,  simplesmente  salve-os
antes de usar e restaure-os depois que os usou!



  Modelamento de memória:➠

    O  mais  chato  dos  compiladores   C/C++  para  o  MS-DOS  é  o
modelamento de memória, coisa que não existe no TURBO PASCAL!   Digo
"chato"  porque esse recurso, QUE É MUITO UTIL, nos dá algumas dores
de cabeça de vez em quando...

    Os modelos COMPACT, LARGE e  HUGE usam, por default, pointers do
tipo  FAR  (segmento:offset).  Os modelos TINY, SMALL e MEDIUM usam,
por default, pointers do  tipo  NEAR  (apenas  offset, o segmento de
dados é assumido!).

    A "chatisse" está  em  criarmos  códigos  que  compilem  bem  em
qualquer  modelo  de  memória.  Felizmente isso é possível graças ao
pre-processador:

┌──────────────────────────────────────────────────────────────────┐
│#if defined(__TYNY__) || defined(__SMALL__) || defined(__MEDIUM__)│
│/* Processamento de pointers NEAR */                              │
│#else                                                             │
│/* Processamento dos mesmos pointers... mas, FAR! */              │
│#endif                                                            │
└──────────────────────────────────────────────────────────────────┘

    Concorda comigo que é  meio  chato  ficar enchendo a listagem de
diretivas do pré-processador?... C'est la vie!

  C + ASM➠

    Os compiladores da BORLAND possuem a  palavra  reservada  "asm".
Ela  diz  ao compilador que o que a segue deve ser interpretado como
uma instrução  assembly.   Os  compiladores  da  MicroSoft possuem o
"_asm" ou o "__asm".  A  BORLAND  ainda  tem  uma  diretiva  para  o
pré-processador  que é usada para indicar ao compilador que o código
deve ser montado pelo TURBO ASSEMBLER ao invés do compilador C/C++:

┌──────────────────────────────────────────────────────────────────┐
│ #pragma inline                                                   │
└──────────────────────────────────────────────────────────────────┘

    Você pode usar isto ou então  a  chave -B da linha de comando do
BCC...  funciona da mesma forma!  Você  deve  estar  se  perguntando
porque  usar  o  TURBO  ASSEMBLER se o próprio compilador C/C++ pode
compilar o código...   Ahhhhh,  por  motivos de COMPATIBILIDADE!  Se
você pretende que o seu código seja compilável no TURBO C  2.0,  por
exemplo,  deve  incluir a diretiva acima!!  Além do mais, o TASM faz
uma checagem mais detalhada do código assembly do que o BCC...

    Eis um exemplo de uma funçãozinha escrita em assembly:

 ┌────────────────────────────────────────────────────────────────┐
 │  int f(int X)                                                  │
 │  {                                                             │
 │      asm mov     ax,X    /* AX = parametro X */                │
 │      asm add     ax,ax   /* AX = 2 * AX */                     │
 │      return _AX;         /* retorna AX */                      │
 │  }                                                             │
 └────────────────────────────────────────────────────────────────┘



    Aqui segue mais uma regra:

     Se a sua função pretende  devolver  um valor do tipo "char" ou➠
      "unsigned char", coloque o valor  no  registrador  AL  e  (nos
      compiladores da BORLAND) use "return _AL;"

      Se  a  sua função pretende devolver um valor do tipo "int" ou➠
      "unsigned int", coloque o  valor  no  registrador AX e (também
      nos compiladores da BORLAND) use "return _AX;"

    A última linha da função acima ("return _AX;") não é necessária,
mas  se  não  a colocarmos teremos um aviso do compilador, indicando
que "a função precisa retornar  um  'int'".  Se você omitir a última
linha   (é  o  caso  dos  compiladores  da  MicroSoft  que  não  tem
pseudo-registradores) e não ligar  pros  avisos, a coisa funciona do
mesmo jeito.

    Agora você deve estar querendo  saber  como  devolver  os  tipos
"long", "double", "float", etc...  O tipo "long" (bem como "unsigned
long") é simples:

     Se a sua função pretende  devolver  um valor do tipo "long" ou➠
      "unsigned  long", coloque os 16 bits mais significativos em DX
      e os 16 menos significativos em AX.

    Não existe uma forma de devolvermos  DX  e  AX  ao  mesmo  tempo
usando  os pseudo-registradores da Borland, então prepare-se para um
"aviso" do compilador...

    Os demais tipos não são  inteiros...   são  de  ponto-flutuante,
portanto, deixe que o compilador tome conta deles.

  Trabalhando com pointers e vetores:➠

    Dê uma olhada na listagem abaixo:



┌───────────────────────────────────────────────────────────────────┐
│   unsigned ArraySize(char *str)                                   │
│   {                                                               │
│#if defined(__TYNY__) || defined(__SMALL__) || defined(__MEDIUM__) │
│       asm mov     si,str  /* STR = OFFSET apenas */               │
│#else                                                              │
│       asm push    ds                                              │
│       asm lds     si,str  /* STR = SEGMENTO:OFFSET */             │
│#endif                                                             │
│                                                                   │
│       asm mov     cx,-1                                           │
│ContinuaProcurando:                                                │
│       asm inc     cx                                              │
│       asm lodsb                                                   │
│       asm or      al,al                                           │
│       asm jnz     ContinuaProcurando                              │
│       asm mov     ax,cx                                           │
│                                                                   │
│#if defined(__COMPACT__) || defined(__LARGE__) || defined(__HUGE__)│
│       asm pop     ds          /* Restaura DS */                   │
│#endif                                                             │
│                                                                   │
│       return _AX;                                                 │
│   }                                                               │
└───────────────────────────────────────────────────────────────────┘

    A rotina acima é equivalente a função strlen() de <string.h>.

    Como disse antes, nos modelos COMPACT, LARGE e HUGE  um  pointer
tem o formato SEGMENTO:OFFSET  que  é  armazenado  na memória em uma
grande variável de 32 bits (os 16 mais significativos são o SEGMENTO
e os 16 menos significativos são o OFFSET).  Nos modelos TINY, SMALL
e MEDIUM apenas o OFFSET é fornecido no pointer  (ele  tem  16  bits
neste  caso),  o SEGMENTO é o assumido em DS (não devemos alterá-lo,
neste caso!).

    Se você compilar  essa  listagem  nos  modelos COMPACT, LARGE ou
HUGE o código coloca em DS:SI o pointer (lembre-se: pointer é só  um
outro  nome  para "endereço de memória!").  Senão, precisamos apenas
colocar em SI o OFFSET (DS já está certo!).

    Ao sair da função, DS deve  ser  o  mesmo de antes da função ser
chamada...  Portanto, nos modelos "LARGOS" (hehe) precisamos  salvar
DS ANTES de usá-lo e restaura-lo  DEPOIS de usado!  O compilador não
faz isso automaticamente!

    Não se preocupe com SI  (neste caso!)...  este sim, o compilador
salva sozinho...

    Um macete com o  uso  de  vetores  pode ser mostrado no seguinte
código exemplo:



 ┌─────────────────────────────────────────────────────────────────┐
 │  char a[3];                                                     │
 │  int b[3], c[3];                                                │
 │  long d[3];                                                     │
 │                                                                 │
 │  void init(void)                                                │
 │  {                                                              │
 │      int i;                                                     │
 │                                                                 │
 │      for (i = 0; i < 3; i++)                                    │
 │          a[i] = b[i] = c[i] = d[i] = 0;                         │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    O compilador gera a seguinte função equivalente em assembly:

 ┌─────────────────────────────────────────────────────────────────┐
 │  void init(void)                                                │
 │  {                                                              │
 │      asm xor     si,si           /* SI = i */                   │
 │      asm jmp     short @1@98                                    │
 │  @1@50:                                                         │
 │      asm mov     bx,si           /* BX = i */                   │
 │      asm shl     bx,1                                           │
 │      asm shl     bx,1            /* BX = BX * 4 */              │
 │      asm xor     ax,ax                                          │
 │      asm mov     word ptr [d+bx+2],0 /* ?! */                   │
 │      asm mov     word ptr [d+bx],ax                             │
 │                                                                 │
 │      asm mov     bx,si                                          │
 │      asm shl     bx,1                                           │
 │      asm mov     [c+bx],ax                                      │
 │                                                                 │
 │      asm mov     bx,si       /* ?! */                           │
 │      asm shl     bx,1        /* ?! */                           │
 │      asm mov     [b+bx],ax                                      │
 │                                                                 │
 │      asm mov     [a+si],al                                      │
 │      asm inc     si                                             │
 │  @1@98:                                                         │
 │      asm cmp     si,3                                           │
 │      asm jl      short @1@50                                    │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    Quando poderiamos ter:



 ┌─────────────────────────────────────────────────────────────────┐
 │  void init(void)                                                │
 │  {                                                              │
 │      asm xor     si,si           /* SI = i = 0 */               │
 │      asm jmp     short @1@98                                    │
 │  @1@50:                                                         │
 │      asm mov     bx,si           /* BX = i */                   │
 │      asm shl     bx,1                                           │
 │      asm shl     bx,1            /* BX = BX * 4 */              │
 │      asm xor     ax,ax           /* AX = 0 */                   │
 │      asm mov     word ptr [d+bx+2],ax /* modificado! */         │
 │      asm mov     word ptr [d+bx],ax                             │
 │                                                                 │
 │      asm shr     bx,1            /* BX = BX / 2 */              │
 │      asm mov     [c+bx],ax                                      │
 │      asm mov     [b+bx],ax                                      │
 │                                                                 │
 │      asm mov     [a+si],al                                      │
 │      asm inc     si                                             │
 │  @1@98:                                                         │
 │      asm cmp     si,3                                           │
 │      asm jl      short @1@50                                    │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    Note  que  economizamos  3  instruções  em  assembly   e   ainda
aceleramos um tiquinho, retirando o movimento de um  valor  imediato
para memória (o 0 de  "mov  word  ptr [d+bx+2],0"), colocando em seu
lugar o registrador AX, que foi zerado previamente.

    Isso  parece  besteira neste código, e eu concordo...  mas, e se
tivessemos:

 ┌─────────────────────────────────────────────────────────────────┐
 │  void init(void)                                                │
 │  {                                                              │
 │      for (i = 0; i < 32000; i++)                                │
 │          a[i] = b[i] = c[i] = d[i] =                            │
 │          e[i] = f[i] = g[i] = h[i] =                            │
 │          I[i] = j[i] = k[i] = l[i] =                            │
 │          m[i] = n[i] = o[i] = p[i] =                            │
 │          r[i] = s[i] = t[i] = u[i] =                            │
 │          v[i] = x[i] = y[i] = z[i] =                            │
 │          /* ... mais um monte de membros de vetores... */       │
 │          = _XYZ[i] = 0;                                         │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    A perda de eficiência  e  o  ganho  de  tamanho do código seriam
enormes por causa da quantidade de  vezes  que  o  loop  é  exeutado
(32000)  e  por  causa  do numero de movimentos de valores imediatos
para memória, "SHL"s  e  "MOV  BX,SI"  que  teriamos!  Conclusão: Em
alguns casos é mais conveniente manipular VARIOS vetores com funções
escritas em assembly...

   EXEMPLO de codificação: ** O swap() aditivado :)

    Alguns  códigos  em  C  que  precisam  trocar  o conteúdo de uma
variável pelo de outra usam o seguinte macro:



 ┌─────────────────────────────────────────────────────────────────┐
 │  #define swap(a,b) { int t; t = a; a = b; b = t; }              │
 └─────────────────────────────────────────────────────────────────┘

    Bem...  a macro acima funciona  perfeitamente bem, mas vamos dar
uma olhada no código  assembly  gerado  pelo compilador pro seguinte
programinha usando o macro swap():

 ┌─────────────────────────────────────────────────────────────────┐
 │  #define swap(a,b) { int t; t = a; a = b; b = t; }              │
 │                                                                 │
 │  int x = 1, y = 2;                                              │
 │                                                                 │
 │  void main(void)                                                │
 │  { swap(x,y); }                                                 │
 └─────────────────────────────────────────────────────────────────┘

    O código equivalente, após ser pre-processado, ficaria:

 ┌─────────────────────────────────────────────────────────────────┐
 │  int x = 2, y = 1;                                              │
 │  void main(void) {                                              │
 │      int t;                                                     │
 │                                                                 │
 │      asm mov ax,x                                               │
 │      asm mov t,ax                                               │
 │      asm mov ax,y                                               │
 │      asm mov x,ax                                               │
 │      asm mov ax,t                                               │
 │      asm mov y,ax                                               │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    No máximo, o compilador usa o registrador SI ou DI como variavel
't'... Poderiamos fazer:

 ┌─────────────────────────────────────────────────────────────────┐
 │  int x = 2, y = 1;                                              │
 │  void main(void)                                                │
 │  {                                                              │
 │      asm mov     ax,x                                           │
 │      asm mov     bx,y                                           │
 │      asm xchg    ax,bx                                          │
 │      asm mov     x,ax                                           │
 │      asm mov     y,ax                                           │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    Repare que eliminamos  uma  instrução  em  assembly,  eliminando
também  um acesso à memória e uma variável local...  Tá bom...  pode
me chamar de chato, mas  eu  ADORO  diminuir  o tamanho e aumentar a
velocidade de meus programas usando esse tipo de artifício! :)
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  Por: Frederico Pissarra

    Aqui  estou  eu   novamente!!!    Nos  textos  de  "SoundBlaster
Programming" a gente vai precisar  entender  um  pouquinho  sobre  o
TURBO ASSEMBLER, então é disso que vou tratar aqui, ok?

    Well...     O   TURBO   ASSEMBLER   'compila'   arquivos   .ASM,
transformando-os em  .OBJ  (sorry  "C"zeiros,  mas os "PASCAL"zeiros
talvez não estejam familiarizados  com  isso!).   Os  arquivos  .OBJ
devem  ser linkados com os demais módulos para formar o arquivo .EXE
final.   Precisamos  então conhecer como criar um .OBJ que possa ser
linkado com códigos em "C" e  "PASCAL".  Eis um exemplo de um módulo
em ASSEMBLY compatível com as duas linguagens:

 ┌────────────────────────────────────────────────────────────────┐
 │  IDEAL               ; Poe TASM no modo IDEAL                  │
 │  MODEL LARGE,PASCAL  ; Modelo de memória...                    │
 │  LOCALS                                                        │
 │  JUMPS                                                         │
 │                                                                │
 │  GLOBAL  ZeraAX : PROC   ; ZeraAX é público aos outros módulos │
 │                                                                │
 │  CODESEG     ; Inicio do (segmento de) código                  │
 │                                                                │
 │  PROC    ZeraAX          ; Inicio de um PROCedimento.          │
 │          sub     ax,ax                                         │
 │          ret                                                   │
 │  ENDP                    ; Fim do PROCedimento.                │
 │                                                                │
 │  END     ; Fim do módulo .ASM                                  │
 └────────────────────────────────────────────────────────────────┘

    As duas linhas iniciais  informam  ao  TURBO ASSEMBLER o modo de
operação (IDEAL), o modelamento de memória (LARGE -  veja  discussão
abaixo!) e o  método  de  passagem  de  parametros  para  uma função
(PASCAL).

    O modo IDEAL é  um  dos  estilos  de  programação  que  o  TURBO
ASSEMBLER suporta (o outro é o  modo  MASM), e é o meu preferido por
um certo número de razões.  O modelo LARGE e a parametrização PASCAL
também são minhas preferidas  porque  no  modelo  LARGE  é  possível
termos  mais  de  um  segmento  de  dados e de código (podemos criar
programas  realmente  GRANDES   e   com   MUITA   informação  a  ser
manipulada!).   PASCAL  deixa  o  código  mais  limpo com relação ao
conteúdo dos registradores  após  o  retorno  de  uma função (alguns
compiladores C, em algumas circunstancias, têm a mania de  modificar
o  conteúdo  de  CX  no  retorno!).  Fora isso PASCAL também limpa a
pilha ANTES do retorno da  procedure/função.  Mas, isso tudo tem uma
pequena desvantagem: Usando-se PASCAL, não podemos passar um  número
variável  de  parametros pela pilha (os três pontos da declaração de
uma função C: void f(char *, ...); )!

    Ahhh...   Você  deve  estar  se  perguntando  o que é o LOCALS e
JUMPS.  LOCALS diz ao compilador  que qualquer label começado por @@
é local ao PROC  atual  (não  é  visivel em outros PROCs!)...  Assim



podemos usar labels com mesmo  nome  dentro  de  várias  PROCs,  sem
causar nenhuma confusão:

 ┌────────────────────────────────────────────────────────────────┐
 │  ; modelamento, modo, etc...                                   │
 │  LOCALS                                                        │
 │                                                                │
 │  PROC    F1                                                    │
 │          mov cx,1000                                           │
 │  @@Loop1:                                                      │
 │          dec cx                                                │
 │          jnz @@Loop1                                           │
 │          ret                                                   │
 │  ENDP                                                          │
 │                                                                │
 │  PROC    F2                                                    │
 │          mov cx,3000                                           │
 │  @@Loop1:                                                      │
 │          dec cx                                                │
 │          jnz @@Loop1                                           │
 │          ret                                                   │
 │  ENDP                                                          │
 │  ;... O resto...                                               │
 └────────────────────────────────────────────────────────────────┘

    Repare  que  F1 e F2 usam o mesmo label (@@Loop1), mas o fato da
diretiva LOCALS estar  presente  informa  ao  assembler que elas são
diferentes!

    Já   JUMPS   resolve   alguns  problemas  para  nós:  Os  saltos
condicionais  (JZ, JNZ, JC, JS, etc..) são relativos a posição atual
(tipo: salte para frente tantas posições a partir de onde  está!)...
Em  alguns  casos  isso  pode causar alguns erros de compilação pelo
fato do salto não poder  ser  efetuado  na faixa que queremos...  ai
entra  o  JUMPS...   Ele resolve isso alterando o código para que um
salto incondicional seja efetuado.   Em  exmplo: Suponha que o label
@@Loop2 esteja muito longe do ponto atual e o salto abaixo não possa
ser efetuado:

 ┌────────────────────────────────────────────────────────────────┐
 │      JNZ     @@Loop2                                           │
 └────────────────────────────────────────────────────────────────┘

    O assembler substitui, caso JUMPS esteja presente, por:

 ┌────────────────────────────────────────────────────────────────┐
 │      JZ      @@P1                                              │
 │      JMP     @@Loop2     ; Salto absoluto se NZ!               │
 │  @@P1:                                                         │
 └────────────────────────────────────────────────────────────────┘

    A linha seguinte do exemplo inicial informa ao assembler  que  o
PROCedimento  ZeraAX  é  público, ou GLOBAL (visível por qualquer um
dos módulos que o queira!).  Logo após, a diretiva CODESEG informa o
inicio de um segmento de código.

    Entre  as  diretivas  PROC  e  ENDP vem o corpo de uma rotina em
assembly.  PROC precisa apenas do  nome da função (ou PROCedimento).
Mais detalhes sobre PROC abaixo.



    Finalizamos a listagem com END, marcando  o  fim  do  módulo  em
.ASM.

    Simples, né?!  Suponha agora que você queira passar um parametro
para um PROC. Por exemplo:

 ┌────────────────────────────────────────────────────────────────┐
 │  ; Equivalente a:                                              │
 │  ;   void pascal SetAX(unsigned v) { _AX = v; }                │
 │  ;   PROCEDURE SetAX(V:WORD) BEGIN regAX := V; END;            │
 │  IDEAL                                                         │
 │  MODEL LARGE,PASCAL                                            │
 │  LOCALS                                                        │
 │  JUMPS                                                         │
 │                                                                │
 │  GLOBAL SetAX : PROC                                           │
 │                                                                │
 │  PROC    SetAX                                                 │
 │  ARG     V : WORD                                              │
 │          mov     ax,[V]                                        │
 │          ret                                                   │
 │  ENDP                                                          │
 │                                                                │
 │  END                                                           │
 └────────────────────────────────────────────────────────────────┘

    Hummmm...   Surgiu uma diretiva nova.  ARG especifica a lista de
parametros que deverá  estar  na  pilha  após  a  chamada  de  SetAX
(ARGumentos de SetAX).  Note que V está entre colchetes na instrução
'mov'...   isso porque V é, na verdade, uma referência à memória (na
pilha!)  e  toda  referência  à  memória  precisa  ser  cercada  com
colchetes (senão  dá  um  baita  erro  de  sintaxe  no modo IDEAL!).
Depois da compilação o assembler substitui V pela referência certa.

    Os  tipos,  básicos,  válidos  para o assembler são: BYTE, WORD,
DWORD...  Não existe INTEGER,  CHAR  como  em PASCAL (INTEGER = WORD
com sinal; assim como CHAR = BYTE com sinal!).

    Para  finalizar:  Em um único módulo podem existir vários PROCs:



 ┌────────────────────────────────────────────────────────────────┐
 │  IDEAL               ; modo IDEAL do TASM                      │
 │  MODEL LARGE, PASCAL ; modelamento de memória...               │
 │  LOCALS                                                        │
 │  JUMPS                                                         │
 │                                                                │
 │  ; ... aqui entra os GLOBALS para os PROCs que vc queira que   │
 │  ;     sejam públicos!                                         │
 │                                                                │
 │  CODESEG     ; Começo do segmento de código...                 │
 │                                                                │
 │  PROC    P1                                                    │
 │      ; ... Corpo do PROC P1                                    │
 │  ENDP                                                          │
 │                                                                │
 │  PROC    P2                                                    │
 │      ; ... Corpo do PROC P2                                    │
 │  ENDP                                                          │
 │                                                                │
 │  ;... outros PROCs...                                          │
 │                                                                │
 │  END     ; Fim da listagem                                     │
 └────────────────────────────────────────────────────────────────┘

    Existem MUITOS outros detalhes  com  relação do TASM...  mas meu
objetivo no curso de ASM é  a  mixagem  de  código...   pls,  alguma
dúvida, mandem mensagem para cá ou via netmail p/ mim em 12:2270/1.
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  Por: Frederico Pissarra

    Continuando o  papo  sobre  o  TASM,  precisaremos aprender como
manipular tipos de dados mais complexos do que WORD, BYTE ou  DWORD.
Eis a descrição das estruturas!

    Uma  estrutura  é o agrupamento de tipos de dados simples em uma
única classe de armazenamento, por exemplo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  STRUC   MyType                                                 │
 │      A   DB  ?                                                  │
 │      B   DW  ?                                                  │
 │  ENDS                                                           │
 └─────────────────────────────────────────────────────────────────┘

    A estrutura MyType acima,  delimitada pelas palavras-chava STRUC
e ENDS, foi construida com dois tipos de dados simples (BYTE e WORD)
com os nomes de A e B. Note que as linhas acima  apenas  declaram  a
estrutura,  sem  alocar  espaço  na  memória  para  ela.   Criar uma
'instancia' dessa estrutura é tão  simples quanto criar uma variável
de tipo simples:

 ┌─────────────────────────────────────────────────────────────────┐
 │  MyVar   MyType  <0,0>                                          │
 └─────────────────────────────────────────────────────────────────┘

    A sintaxe  é  basicamente  a  mesma  de  qualquer  declaração de
variável em assembly, com a diferença de que o 'tipo' do  dado  é  o
nome  (ou  TAG)  da  estrutura  -  MyType  - e os dados iniciais dos
elementos da estrutura estão localizados entre os simbolos < e >. Na
linha acima criamos a  variável  MyVar,  cujos  elementos são 0 e 0.
Vamos a um exemplo de uso desse novo tipo:



 ┌────────────────────────────────────────────────────────────────┐
 │  ;... Aqui entra o modelamento,...                             │
 │                                                                │
 │  DATASEG                                                       │
 │                                                                │
 │  MyVar   MyType  <0,0>                                         │
 │                                                                │
 │  CODESEG                                                       │
 │                                                                │
 │  PROC    SetA        ; Poe valor em A na estrutura.            │
 │  ARG     V : Byte                                              │
 │          mov     al,[V]                                        │
 │          mov     [MyVar.A],al                                  │
 │          ret                                                   │
 │  ENDP                                                          │
 │                                                                │
 │  PROC    SetB        ; Poe valor em B na estrutura.            │
 │  ARG     V : Word                                              │
 │          mov     ax,[V]                                        │
 │          mov     [MyVar.B],ax                                  │
 │          ret                                                   │
 │  ENDP                                                          │
 │                                                                │
 │  ;... Aqui entra o fim do código...                            │
 └────────────────────────────────────────────────────────────────┘

    Simples, não?

    Mas, e se quisermos trabalhar  com  um  vetor  do  tipo  MyType?
Vetores de tipos mais simples é facil:

 ┌────────────────────────────────────────────────────────────────┐
 │  DATASEG                                                       │
 │                                                                │
 │  MyVar1  dw  10 DUP (0)                                        │
 │                                                                │
 │  CODESEG                                                       │
 │                                                                │
 │  PROC    Fill1                                                 │
 │      mov     cx,10                                             │
 │      sub     bx,bx                                             │
 │  @@FillType1:                                                  │
 │      mov     [bx+MyVar1],0FFh                                  │
 │      add     bx,2                                              │
 │      dec     cx                                                │
 │      jnz     @@FillType1                                       │
 │      ret                                                       │
 │  ENDP                                                          │
 └────────────────────────────────────────────────────────────────┘

    Aqui fiz da  maneira  mais  dificil  apenas para exemplificar um
método de preenchimento  de  vetores.   No  caso,  BX  contém o item
desejado do vetor.  MyVar1 é o  deslocamento  do  primeiro  item  do
vetor  na  memória  e  CX  a quantidade de itens do vetor.  Note que
temos um vetor de WORDS  e  precisaremos  adicionar 2 (tamnho de uma
WORD) para cara item do vetor.  No caso da estrutura, isso  fica  um
pouco mais complicado porque ela pode ter um tamanho não múltiplo de
2  (o que complica o cálculo.  Por exemplo, MyType (a estrutura) tem
3 bytes de  tamanho.   Eis  a  implementação  (não otimizada) para a



rotina FillType para preenchimento de um  vetor  de  MyType  com  10
itens:

 ┌─────────────────────────────────────────────────────────────────┐
 │  DATASEG                                                        │
 │  MyVar   MyType  10 dup (<0,0>)                                 │
 │                                                                 │
 │  CODESEG                                                        │
 │  PROC    FillType                                               │
 │          mov     cx,10                                          │
 │          sub     bx,bx   ; indice para localizar itens.         │
 │  @@FillLoop:                                                    │
 │          mov     [bx+MyVar.A],0FFh   ; * Instrução destacada... │
 │          mov     [bx+MyVar.B],0FFFFh                            │
 │          add     bx,3                                           │
 │          dec     cx                                             │
 │          jnz     @@FillLoop                                     │
 │          ret                                                    │
 │  ENDP                                                           │
 └─────────────────────────────────────────────────────────────────┘

    Essa rotina merece ser observada mais de perto:

    Vejamos a  instrução  destacada  na  listagem  acima...  MyVar.A
fornece o deslocamento de A, do primeiro item do vetor, na  memória,
enquanto isso BX fornece o indice do item desejado no vetor.  Assim,
BX+MyVar.A  fornecerá  o  offset  do elemento A do item da estrutura
desejado.

    Well... É isso...
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  Por: Frederico Pissarra

    Usando a memória Expandida (EMS).

    Muitos modplayers hoje  em  dia  usam  a  memória expandida para
armazenar os samples.  Neste texto veremos como funciona  a  memória
expandida e como usá-la...

    A  maioria  dos  PC-ATs  com  mais de 1Mb de memória possui dois
tipos de memória:

     Convencional - Na faixa de 0 até 1Mb➠

     Extendida: de 1Mb em diante.➠

    A  memória extendida é facilmente manipulável quando um programa
está em modo protegido e com  toda  a  memória mapeada em um ou mais
seletores.  Os 386s permitem que um seletor acesse  um  segmento  de
até  4Gb  de  tamanho...   Mas,  não  é esse o nosso caso.  Temos um
pequeno programa rodando sob o MS-DOS, no modo real (modo nativo dos
processadores Intel), que tem acesso somente à memória convencional.
Podemos acessar a memória  extendida  através do driver HIMEM.SYS ou
usando  uma  função  de  movimento  de  blocos  da  BIOS,  mas  isso
aumentaria em muito a complexidade do software (e, por conseguência,
seu tamanho).

    A Lotus, Intel e Microsoft criaram a especificação EMS para esse
caso.  O  programa  EMM386.EXE,  ou  qualquer  outro  gerenciador de
memória como o QEMM, emula a memória expandida da  mesma  forma  que
uma  máquina  com  apenas  este  tipo  de  memória  faria (A memória
expandida por hardware não fez muito  sucesso nos EUA como a memória
extendida!).  A especificação EMS  simplesmente  usa  um  espaço  da
memória  convencional  (chamado  de  "Page  Frame")  para  armazenar
"páginas" de 16kb da memória extendida.  Isto  é...   divida  a  sua
memória  extendida  em  diversos  blocos  de  16k e terá o número de
páginas (pages) que poderão estar disponíveis para  uso.

    O EMM (Expanded  Memory  Manager)  simplesmente  faz a cópia das
páginas  desejadas  para  o  "Page  Frame" para que o nosso software
posssa lê-las e escrevê-las,  copiando-as  de  volta para as páginas
corretas quando fizermos a troca de páginas  do  "Page  Frame".   No
"Page  Frame"  cabem,  normalmente, 4 páginas... fazendo um total de
64kb (ou seja, exatamente o  tamanho  de um segmento!).  Considere a
figura abaixo:



         Memória extendida          Memória extendida
                                         paginada

               ┌──┐                       ┌──┐
               │  │                       │  │Page 0
               │  │                       ├--┤
               │  │                       │  │Page 1
               │  │                       ├--┤
               │  │                       │  │Page 2
               │  │                       ├--┤
               │  │                       │  │Page 3
               │  │                       ├--┤
               │  │                       │  │Page 4
               │  │                       ├--┤
               └ ┘                       └ ┘┈┈ ┈┈

    Ok...  a memória extendida foi dividida em 'n' páginas  de  16k.
O  "Page  Frame" fica na memória convencional.  Por exemplo, suponha
que o "Page Frame" esteja localizado no segmento 0C000h:

                         "Page Frame"

                     ┌───────────────────┐0
     Página fisica 0 │                   │
                     ├───────────────────┤16k
     Página fisica 1 │                   │
                     ├───────────────────┤32k
     Página fisica 2 │                   │
                     ├───────────────────┤48k
     Página fisica 3 │                   │
                     └───────────────────┘64k

    Do offset 0 até 16k-1 fica a primeira página do "Page Frame", do
offset 16k até 32k-1 a segunda, e assim por diante.  A especificação
EMS nos permite colocar apenas 4  páginas no "Page Frame".  Assim, o
nosso programa escolhe cada uma das  quatro  "páginas  lógicas"  que
serão  copiadas  da  memória  extendida  para  cada  uma  das quatro
"páginas fisicas" do Page Frame.

    Vale a pena lembrar que o  Page Frame está sempre em algum lugar
da memória convencional, portanto  acessível  aos  programas  feitos
para MS-DOS, que normalmente trabalham em modo real.

    A  interrupção  67h  é a porta de entrada para as funções do EMM
(EMM386,  QEMM,  386MAX,  entre  outros).  Mas antes de começarmos a
futucar o EMM precisamos saber se ele está presente...  Eis a rotina
de detecção do EMM p/ os compiladores C da BORLAND:



──────── ────────── ────────── ──────────── ────────────────✂ ✂ ✂ ✂
#include <io.h>
#include <fcntl.h>
#include <dos.h>

#define CARRY_BIT   (_FLAGS & 0x01)

/* Obtém a maior versão do EMM - definida em outro módulo! */
extern int emm_majorVer(void);

/* Testa a presença do EMM
   Retorna 0 se EMM não presente ou versão < 3.xx
   Retorna 1 se tudo ok! */
int isEMMpresent(void)
{
    int handle;

    /* Tenta abrir o device driver EMMXXXX0 para leitura! */
    if ((handle = open("EMMXXXX0", O_BINARY | O_RDONLY)) == -1)
        return 0;   /* Não tem EMM! */

    /* Verifica se é um arquivo ou dispositivo. Usa IOCTL para isso! */
    _BX = handle;
    _AX = 0x4400;
    geninterrupt(0x21);
    if (!(_DX & 0x80))
        return 0;   /* É um arquivo!!! Não é o EMM! */

    /* Verifica o dispositivo está ok */
    _BX = handle;
    _AX = 0x4407;
    geninterrupt(0x21);
    if (CARRY_BIT || !_AL) return 0; /* Não está ok */

    /* Verifica a versão do EMM. Para nossos propósitos tem que ser >= 3.xx */
    if (emm_majorVer() < 3) return 0; /* Não é ver >= 3.xx */

    /* Tudo ok... EMM presente */
    return 1;
}
──────── ────────── ────────── ──────────── ────────────────✂ ✂ ✂ ✂

    No próximo texto mostrarei como usar o EMM.
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  Por: Frederico Pissarra

    Eis  o  arquivo  .ASM com as rotinas para manipulação da memória
expandida:

 ┌────────────────────────────────────────────────────────────────┐
 │  IDEAL                                                         │
 │  MODEL LARGE,PASCAL                                            │
 │  LOCALS                                                        │
 │  JUMPS                                                         │
 │                                                                │
 │  GLOBAL  emmGetVersion : PROC                                  │
 │  GLOBAL  emmGetPageFrameSegment : PROC                         │
 │  GLOBAL  emmGetAvailablePages : PROC                           │
 │  GLOBAL  emmAllocPages : PROC                                  │
 │  GLOBAL  emmFreePages : PROC                                   │
 │  GLOBAL  emmMapPage : PROC                                     │
 │  GLOBAL  emmGetError : PROC                                    │
 │                                                                │
 │  DATASEG                                                       │
 │                                                                │
 │  emmVersion  dw  0                                             │
 │  emmError    db  0       ; Nenhum erro ainda... :)             │
 │                                                                │
 │  CODESEG                                                       │
 │                                                                │
 │  ; Obtém a versão do EMM.                                      │
 │  ; Devolve no formato 0x0X0Y (onde X é versão e Y revisão).    │
 │  ; Protótipo em C:                                             │
 │  ;   unsigned pascal emmGetVersion(void);                      │
 │  PROC    emmGetVersion                                         │
 │      mov     [emmError],0    ; Inicializa flag de erro...      │
 │      mov     ah,46h                                            │
 │      int     67h             ; Invoca o EMM                    │
 │      or      ah,ah           ; Testa o sucesso da função...    │
 │      jz      @@no_error                                        │
 │      mov     [emmError],ah   ; Poe erro no flag...             │
 │      mov     ax,-1           ; ... e retorna != 0.             │
 │      jmp     @@done                                            │
 │      mov     ah,al           ; Prepara formato da versão.      │
 │      and     ax,111100001111b ; A função 46h do EMM devolve    │
 │      mov     [emmVersion],ax  ; no formato BCD... por isso     │
 │  @@done:                      ; precisamos formatar...         │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │



 │  ; Função: Obtém o segmento do Page Frame.                     │
 │  ; Protótipo em C:                                             │
 │  ;   unsigned pascal emmGetPageFrameSegment(void);             │
 │  PROC    emmGetPageFrameSegment                                │
 │      mov     ah,41h      ; Usa a função 41h do EMM             │
 │      int     67h         ; Chama o EMM                         │
 │      mov     ax,bx       ; Poe o segmento em AX                │
 │                          ; Função 41h coloca o segmento do     │
 │                          ; "Page Frame" em BX.                 │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │
 │  ; Função: Obtém o número de páginas disponíveis na memória.   │
 │  ; Protótipo em C:                                             │
 │  ;   unsigned pascal emmGetAvailablePages(void);               │
 │  ; Obs:                                                        │
 │  ;   Não verifica a ocorrencia de erros... modifique se quiser │
 │  PROC    emmGetAvailablePages                                  │
 │      mov     ah,42h                                            │
 │      int     67h     ; Invoca o EMM.                           │
 │      mov     ax,bx   ; Poe páginas disponiveis em AX.          │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │
 │  ; Aloca páginas e devolve handle.                             │
 │  ; Protótipo em C:                                             │
 │  ;   int pascal emmGetAvailablePages(unsigned Pages);          │
 │  ; Obs: Devolve -1 se houve erro na alocaçao e seta            │
 │  ;      a variável emmError.                                   │
 │  PROC    emmAllocPages                                         │
 │  ARG     Pages:WORD                                            │
 │      mov     [emmError],0    ; Inicializa flag de erros...     │
 │      mov     bx,[Pages]      ; BX = número de páginas a alocar │
 │      mov     ah,43h                                            │
 │      int     67h             ; Invoca o EMM.                   │
 │      or      ah,ah           ; Verifica erro do EMM.           │
 │      jz      @@no_error                                        │
 │      mov     [emmError],ah   ; Poe erro na variável emmError   │
 │      mov     dx,-1                                             │
 │  @@no_error:                                                   │
 │      mov     ax,dx           ; retorna código de erro.         │
 │                              ; ou o handle.                    │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │
 │  ; Libera páginas alocadas.                                    │
 │  ; Protótipo em C:                                             │
 │  ;   void pascal emmFreePages(int handle);                     │
 │  ; Obs: Não verifica erros... modifique se quiser...           │
 │  PROC    emmFreePages                                          │
 │  ARG     handle:WORD                                           │
 │      mov     dx,[handle]                                       │
 │      mov     ah,45h                                            │
 │      int     67h                                               │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │



 │  ; Mapeia uma página no Page Frame.                            │
 │  ; Protótipo em C:                                             │
 │  ;   int pascal emmMapPage(int handle,                         │
 │  ;                         unsigned char pfPage,               │
 │  ;                         unsignec PageNbr);                  │
 │  ; Onde: handle é o valor devolvido pela função de alocação de │
 │  ;       páginas.                                              │
 │  ;       pfPage é o número da página do Page Frame (0 até 3).  │
 │  ;       PageNbr  é o número da página a ser colocada no       │
 │  ;       Page Frame (0 até máximo - 1).                        │
 │  ; Devolve -1 se ocorreu erro e seta a variável emmError.      │
 │  PROC    emmMapPage                                            │
 │  ARG     handle:WORD, pfPage:BYTE, PageNbr:WORD                │
 │      mov     [emmError],0                                      │
 │      mov     ah,44h                                            │
 │      mov     al,[pfPage]                                       │
 │      mov     bx,[PageNbr]                                      │
 │      mov     dx,[handle]                                       │
 │      int     67h                                               │
 │      or      ah,ah                                             │
 │      jz      @@no_error                                        │
 │      mov     [emmError],ah                                     │
 │      mov     ah,-1                                             │
 │  @@no_error:                                                   │
 │      mov     al,ah                                             │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │
 │  ; Retorna com o erro do EMM.                                  │
 │  ; Protótipo:                                                  │
 │  ;   int pascal emmGetError(void);                             │
 │  PROC    emmGetError                                           │
 │      mov     ax,[emmError]                                     │
 │      ret                                                       │
 │  ENDP                                                          │
 │                                                                │
 │  END                                                           │
 └────────────────────────────────────────────────────────────────┘

    Esta  é  uma   implementação   simplificada,   mas  para  nossos
propósitos serve muito bem.  Algumas considerações:  A  alocação  de
memória  via  EMM não é feita da mesma maneira que a função malloc()
de C ou GetMem() do  TURBO  PASCAL.  Não é devolvido nenhum pointer.
Isto se torna óbvio a partir do momento que entendemos como funciona
o EMM: Toda a manipulação de bancos de  memória  é  feita  de  forma
indireta pelo Page Frame.  A função de alocação deve apenas devolver
um handle para que possamos  manipular as páginas alocadas.  Entenda
esse handle da mesma forma com que os  arquivos  são  manipulados...
Se  quisermos  usar um banco alocado precisamos informar ao EMM qual
dos bancos queremos usar, fazendo  isso  via o handle devolvido pelo
próprio EMM.

    Suponha que queiramos alocar  128kb  da memória expandida para o
nosso programa.  Precisamos alocar 8 páginas  lógicas  (8  *  16k  =
128k).  Chamariamos a função emmAllocPages() em C da seguinte forma:



 ┌────────────────────────────────────────────────────────────────┐
 │  #include <conio.h>                                            │
 │  #include <stdlib.h>                                           │
 │                                                                │
 │  int emm_handle;                                               │
 │                                                                │
 │  void f(void)                                                  │
 │  {                                                             │
 │      /* ... */                                                 │
 │      if ((emm_handle = emmAllocPages(8)) == -1) {              │
 │          cprintf("EMM ERROR #%d\r\n", emmGetError());          │
 │          exit(1);                                              │
 │      }                                                         │
 │      /* ... */                                                 │
 │  }                                                             │
 └────────────────────────────────────────────────────────────────┘

    Na  função  emmAllocPages() optei por devolver -1 para indicar o
insucesso da função...  Você pode  arrumar um esquema diferente para
chegar isso (por  exemplo,  checando  a  variável  emmError  após  a
chamada a função!).

    Well...  Temos 8 páginas lógicas disponíveis.  E agora?...  As 8
páginas estão sempre numeradas de 0 até o máximo - 1.  No nosso caso
teremos as páginas 0 até 7 disponíveis ao nosso programa.  Lembre-se
que cada uma tem apenas 16k de tamanho e que podem ser arranjadas de
qq  maneira  q  vc  queira  no  Page Frame.  Vamos usar as 4 páginas
iniciais como  exemplo...  para  isso  precisamos  mapea-las no Page
Frame usando a função emmMapPage().

 ┌────────────────────────────────────────────────────────────────┐
 │  void f(void)                                                  │
 │  {                                                             │
 │      int i;                                                    │
 │                                                                │
 │      /* ... */                                                 │
 │      for (i = 0; i < 4; i++)                                   │
 │          emmMapPage(emm_handle,i,i);                           │
 │  }                                                             │
 └────────────────────────────────────────────────────────────────┘

    Depois  deste  pequeno  loop  sabemos  que qualquer alteração no
conteúdo do  Page  Frame  alterará  as  páginas  que  estão mapeadas
nele...:) Simples né?  Só nos resta conhecer o endereço  inicial  do
Page Frame:

 ┌────────────────────────────────────────────────────────────────┐
 │  #include <dos.h>                                              │
 │                                                                │
 │  void far *PageFrameAddr;                                      │
 │                                                                │
 │  void f(void)                                                  │
 │  {                                                             │
 │      /* ... */                                                 │
 │      PageFrameAddr = MK_FP(emmGetPageFrameSegment(), 0);       │
 │      /* ... */                                                 │
 │  }                                                             │
 └────────────────────────────────────────────────────────────────┘



    Ao  fim do uso da memória expandida precisamos dealocar o espaço
previamente alocado...  C  e  C++  dealocam automaticamente qualquer
espaço alocado por malloc(), calloc() e funções afins...   Não  é  o
caso  de  nossas rotinas acima...  então acostume-se a manter a casa
em ordem e usar  a  função  emmFree()  quando  não precisar mais das
páginas alocadas.

    Isso  tudo  não funcionará se o EMM não estiver instalado...  No
texto anterior mostrei a rotina  para  determinar a presença do EMM.
E, no mesmo texto, apareceu a rotina emm_majorVer().  Eis  a  rotina
abaixo:

 ┌────────────────────────────────────────────────────────────────┐
 │  int emm_majorVer(void)                                        │
 │  { return ((int)emmGetVersion() >> 8); }                       │
 └────────────────────────────────────────────────────────────────┘
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  Por: Frederico Pissarra

    Hummmm...  Estamos na era dos  32 bits...  então por que esperar
mais para discutirmos as novidades da linha 386  e  486?   Eles  não
diferem  muito do irmão menor: o 8086.  A não ser pelo fato de serem
"maiores". :)

    O 8086 e 80286 têm barramento de dados de  16  bits  de  tamanho
enquanto o 386 e o 486 tem  de 32 bits.  Nada mais justo que existam
modificações nos registradores também:

           31              16 15                  0
           ┌─────────────────┬─────────┬──────────┐
           │                 │   AH   AX   AL     │ EAX
           ├─────────────────┼─────────┼──────────┤
           │                 │   BH   BX   BL     │ EBX
           ├─────────────────┼─────────┼──────────┤
           │                 │   CH   CX   CL     │ ECX
           ├─────────────────┼─────────┼──────────┤
           │                 │   DH   DX   DL     │ EDX
           └─────────────────┴─────────┴──────────┘

    Os registradores de uso geral continuam os velhos conhecidos  de
sempre...  Só que existem os registradores  de uso geral de 32 bits:
EAX, EBX, ECX e EDX, onde os 16 bits menos significativos destes são
AX, BX, CX e DX, respectivamente.

           31              16 15                  0
           ┌─────────────────┬────────────────────┐
           │                 │        SI          │ ESI
           ├─────────────────┼────────────────────│
           │                 │        DI          │ EDI
           ├─────────────────┼────────────────────│
           │                 │        BP          │ EBP
           ├─────────────────┼────────────────────│
           │                 │        SP          │ ESP
           └─────────────────┴────────────────────┘

    Da mesma forma, os registradores SI, DI, BP  e  SP  ainda  estão
aqui...  bem como os seus equivalentes de 32 bits: ESI, EDI,  EBP  e
ESP.

    Os registradores  de  segmento  (chamados  de  SELETORES desde o
surgimento do 80286)  são  os  mesmos  e  não  mudaram  de  tamanho,
continuam com 16 bits: CS, DS, ES e SS.  Mas acrecentaram outros: FS
e  GS.  Isto é...  Agora existe um registrador de segmento de código
(CS), um segmento de pilha (SS) e quatro segmentos de dados (DS, ES,
FS e GS).  Lembrando que DS  é  o segmento de dados default.  Repare
na ordem alfabética dos registradores de segmento de dados...



    O registrador Instruction Pointer  também  continua  o  mesmo...
E também existe o seu irmão maior... EIP:

           31              16 15                  0
           ┌─────────────────┬────────────────────┐
           │                 │        IP          │ EIP
           └─────────────────┴────────────────────┘

    Da mesma forma os FLAGS também são os mesmos de sempre...  mas o
registrador FLAGS também foi expandido para 32  bits  e  chamado  de
EFLAGS.   Os sinalizadores extras são usados em aplicações especiais
(como por exemplo,  chaveamento  para  modo protegido, modo virtual,
chaveamento de tarefas, etc...).

    Alguns outros registradores foram  adicionados ao conjunto: CR0,
CR1, CR3, TR4 a TR7.  DR0 a DR3, DR6 e DR7  (todos  de  32  bits  de
tamanho).  Esses novos registradores  são  usados no controle da CPU
(CR?), em testes (TR?) e DEBUG (DR?).  Não tenho maiores informações
sobre alguns deles e por isso não vou descrevê-los aqui.

     Novas instruções foram criadas para o 386 e ainda  outras  mais
novas  para  o  486  (imagino  que  devam  existir outras instruções
específicas para o Pentium!). Eis algumas delas:

 BSF (Bit Scan Forward)➠

    Processador: 386 ou superior

    Sintaxe: BSF dest,src

    Descrição:

        Procura pelo  primeiro  bit  setado  no  operando "src".  Se
encontrar, coloca o numero do bit no operando "dest" e seta  o  flag
Zero.   Se   não   encontrar,  o  operando "dest"  conterá um  valor 
indefinido e o flag Zero será resetado.  BSF  procura  o  bit setado
começando  pelo  bit 0 do operando "src".

    Exemplo:

        BSF     AX,BX

 BSR (Bit Scan Reverse)➠

    Processador: 386 ou superior

    Sintaxe: BSR dest,src

    Descrição:

        Faz a mesma coisa que BSF, porém a ordem de procura começa a
partir do bit mais significativo do operando "src".

    Exemplo:

        BSR     AX,BX



 BSWAP➠

    Processador: 486 ou superior

    Sintaxe: BSWAP reg32

    Descrição:

        Inverte a ordem das words de um registrador de 32 bits.

    Exemplo:

        BSWAP EAX

 BT (Bit Test)➠

    Processador: 386 ou superior

    Sintaxe: BT dest,src

    Descrição:

        Copia  o  conteúdo  do  bit do operando "dest" indicado pelo
operando "src" para o flag Carry.

    Exemplo:

        BT  AX,3

    Observações:

      1- Aparentemente esta  instrução  não  aceita  operandos de 32
         bits.
      2- No exemplo acima o bit 3 de AX será  copiado  para  o  flag
         Carry.

 BTC (Bit Test And Complement)➠

    Processador: 386 ou superior

    Sintaxe:  BTC dest,src

    Descrição:

        Instrução  identica  à BT, porém complementa (inverte) o bit
do operando "dest".

 BTR e BTS➠

    Processador: 386 ou superior

    Sintaxe: BTR dest,src
             BTS dest,src

    Descrição:

        Instruções identicas a BT, porém  BTR zera o bit do operando
destino e BTS seta o bit do operando destino.



 CDQ (Convert DoubleWord to QuadWord)➠

    Processador: 386 ou superior

    Sintaxe: CDQ

    Descrição:

        Expande o conteúdo do registrador EAX para o par EDX e  EAX,
preenchendo com o bit 31 de EAX os bits de EDX (extensão de sinal).

 CWDE (Convert Word to DoubleWord Extended)➠

    Processador: 386 ou superior

    Sintaxe: CWDE

    Descrição:

        Esta  instrução  expande  o   registrador   AX   para   EAX,
considerando  o sinal.  Ela é equivalente a instrução CWD, porém não
usa o par DX:AX para isso.

 CMPXCHG➠

    Processador: 486 ou superior

    Sintaxe: CMPXCHG dest,src

    Descrição:

        Compara  o  acumulador  (AL,  AX  ou  EAX  -  dependendo dos
operandos) com o operando  "dest".   Se  forem iguais o acumulador é
carregado com o conteúdo de "dest", caso contrário com o conteúdo de
"src".

    Exemplo:

        CMPXCHG BX,CX

 INVD (Invalidate Cache)➠

    Processador: 486 ou superior

    Sintaxe: INVD

    Descrição:

        Limpa o cache interno do processador.

 JECXZ➠

    Processador: 386 ou superior

    Observação: É identica a instrução  JCXZ,  porém o teste é feito
no registrador extendido ECX (32 bits).



 LGS e LFS➠

    Processador: 386 ou superior

    Observação: Essas instruções são identicas as instruções  LDS  e
LES, porém trabalham com os novos registradores de segmento.

 MOVSX e MOVZX➠

    Processador: 386 ou superior

    Sintaxe: MOVSX dest,src
             MOVZX dest,src

    Descrição:

        Instruções  úteis  quando  queremos  lidar  com operandos de
tamanhos diferentes.  MOVZX move  o  conteúdo do operando "src" para
"dest" (sendo que "src" deve ser menor que "dest") zerando  os  bits
extras.   MOVSX  faz  a  mesma coisa, porém copiando o último bit de
"src" nos bits extras de "dest" (conversão com sinal).

    Exemplo:

        * Usando  instruções  do  8086,  para  copiar  AL  para  BX
          precisariamos fazer isto:

                MOV     BL,AL
                MOV     BH,0

        * Usando MOVZX podemos simplesmente fazer:

                MOVZX   BX,AL

 Instrução condicional SET➠

    Processador: 386 ou superior

    Sintaxe: SET? dest
             (Onde ? é a condição...)

    Descrição:

        Poe 1 no operando destino  se  a  condição  for  satisfeita.
        Caso contrário poe 0.

    Exemplo:

        SETNZ AX
        SETS  EBX
        SETZ  CL



 SHRD e SHLD (Double Precision Shift)➠

    Processador: 386 ou superior

    Sintaxe: SHRD dest,src,count
             SHLD dest,src,count

    Descrição:

        Faz  o  shift  para  esquerda  (SHLD)  ou  direita (SHRD) do
operando "dest" "count" vezes, porém  os bits que seriam preenchidos
com zeros são preenchidos com o contéudo dos bits do operando "src".
Eis um gráfico exemplificando:

    SHRD
          src               dest
    ┌──────────────┐   ┌─────────────┐
    │              ├─→─┤             ├──→ Carry
    └──────────────┘   └─────────────┘
     n            0      n            0

    O operando "src" não é alterado no processo.  O  flag  de  Carry
contém o último bit que "saiu" do operando "dest".

    Exemplo:

        SHLD    EAX,ECX,3
        SHRD    AX,BX,CL

 Instruções que manipulam blocos...➠

    CMPSD,  LODSD,  MOVSD, STOSD, INSD e OUTSD se comportam da mesma
forma que suas similares  de  8  ou  16  bits (CMPSB, CMPSW, etc..),
porém usam os registradores extendidos (ESI, EDI, ECX, EAX) e operam
com dados de 32 bits de tamanho (DoubleWords).

    Existem mais instruções...  Consulte algum manual da Intel ou  o
hipertexto  HELPPC21...  Pedirei aos Sysops do VixNET BBS (agora com
6 linhas hehehe) para  deixarem disponivel o arquivo 386INTEL.ZIP...
que é o guia técnico para o processador 386.
────────────────────────────────────────────────────────────────────

Dúvidas a respeito dos novos recursos:

[Q] Os  segmentos  tem  mais  que  64k  no  modo  real,  já  que  os
registradores  extendidos  podem  ser  usados  neste   modo?    Como
funcionaria uma instrução do tipo:

    MOV     [ESI+3],EAX

[R]  Não...   no  modo  real  os  segmentos  continuam  a ter 64k de
tamanho.  Os registradores extendidos podem  ser usados a vontade e,
quando  usados como offset em um segmento, os 16 bits superiores são
ignorados. A instrução apresentada funcionaria da mesma forma que:

    MOV     [SI+3],EAX

[Q] Onde e quando deve-se usar os novos registradores de segmentos?
[R] Onde e quando  você  quiser.   Pense  neles  como se fosse novos



segmentos de dados extras.   Na  realidade  você  apenas  conseguirá
usá-los  se  explicitá-los  numa  instrução  que  faz  referência  à
memória, por exemplo:

    MOV FS:[BX],AL

[Q] Posso usar os registradores extendidos nas instruções normais ou
apenas nas novas instruções?
[R]  Pode  usá-los  nas  instruções  "normais".   A  não  ser  que a
instrução não permita operandos de 32 bits...

    That's all for now...





               ┏━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
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               ┗━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

  Por: Frederico Pissarra

Oi povo...

    Estou retomando  o  desenvolvimento  do  curso  de  assembly aos
poucos  e na nova série:  Otimização de código para programadores C.
Well... vão  algumas  das  rotinas  para  aumentar  a velocidade dos
programas C que lidam com strings:

┏━━━━━━━━━━┓
 strlen() ┃ ┃
┗━━━━━━━━━━┛

    A  rotina  strlen()  é  implementada  da  seguinte  maneira  nos
compiladores C mais famosos:

 ┌─────────────────────────────────────────────────────────────────┐
 │  int strlen(const char *s)                                      │
 │  {                                                              │
 │      int i = 0;                                                 │
 │      while (*s++) ++i;                                          │
 │      return i;                                                  │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    Isso  gera  um  código  aproximadamente  equivalente,  no modelo
small, a:

 ┌──────────────────────────────────────────────────────────┐
 │  PROC    _strlen NEAR                                    │
 │  ARG     s:PTR                                           │
 │      push    si                   ; precisamos preservar │
 │      push    di                   ;  SI e DI.            │
 │      xor     di,di                ; i = 0;               │
 │      mov     si,s                                        │
 │  @@_strlen_loop:                                         │
 │      mov     al,[si]                                     │
 │      or      al,al                ; *s == '\0'?          │
 │      jz      @@_strlen_exit       ; sim... fim da rotina.│
 │      inc     si                   ; s++;                 │
 │      inc     di                   ; ++i;                 │
 │      jmp     short @@_strlen_loop ; retorna ao loop.     │
 │  @@_strlen_exit:                                         │
 │      mov     ax,si                ; coloca i em ax.      │
 │      pop     si                   ; recupara SI e DI.    │
 │      pop     di                                          │
 │      ret                                                 │
 │  ENDP                                                    │
 └──────────────────────────────────────────────────────────┘

    Eis uma implementação mais eficaz:



┌─────────────────────────────────────────────────────────────────────┐
│ #ifdef __TURBOC__                                                   │
│ #include <dos.h>      /* Inclui pseudo_registradores */             │
│ #define _asm  asm                                                   │
│ #endif                                                              │
│                                                                     │
│   int     Strlen(const char *s)                                     │
│   {                                                                 │
│       _asm push    es                                               │
│                                                                     │
│ #ifndef __TURBOC__                                                  │
│       _asm push    di                                               │
│ #endif                                                              │
│                                                                     │
│ #if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__) │
│       _asm les     di,s                                             │
│ #else                                                               │
│       _asm mov     di,ds                                            │
│       _asm mov     es,di                                            │
│       _asm mov     di,s                                             │
│ #endif                                                              │
│                                                                     │
│       _asm mov     cx,-1                                            │
│       _asm sub     al,al                                            │
│       _asm repne   scasb                                            │
│                                                                     │
│       _asm not     cx                                               │
│       _asm dec     cx                                               │
│       _asm mov     ax,cx                                            │
│                                                                     │
│ #ifndef __TURBOC__                                                  │
│       _asm pop     di                                               │
│ #endif                                                              │
│                                                                     │
│       _asm pop     es                                               │
│                                                                     │
│ #ifdef __TURBOC__                                                   │
│       return _AX;                                                   │
│ #endif                                                              │
│   }                                                                 │
└─────────────────────────────────────────────────────────────────────┘

    Essa nova Strlen() [Note que é Strlen() e não strlen(), para não
confundir com a função que já existe na biblioteca padrão!]  é,  com
certeza,  mais  rápida  que  strlen(),  pois  usa a instrução "repne
scasb" para varrer o vetor a  procura  de um caracter '\0', ao invés
de  recorrer  a  várias instruções em um loop.  Inicialmente, CX tem
que ter o maior valor  possível  (-1  não sinalizado = 65535).  Essa
função  falha  no  caso  de  strings muito longas (maiores que 65535
bytes), dai precisaremos usar strlen()!

    Uma vez encontrado o caracter '\0' devemos  inverter  CX.   Note
que se invertermos 65535 obteremos  0.  Acontece que o caracter '\0'
tambem  é  contado...  dai,  depois  de  invertermos   CX,   devemos
decrementá-lo também, excluindo o caracter nulo!

    Não se preocupe com DI se  vc usa algum compilador da BORLAND, o
compilador trata de salvá-lo e recuperá-lo sozinho...



┏━━━━━━━━━━┓
 strcpy() ┃ ┃
┗━━━━━━━━━━┛

    Embora alguns compiladores sejam espertos o suficiente para usar
as intruções de manipulação de blocos a implementação mais comum  de
strcpy é:

 ┌─────────────────────────────────────────────────────────────────┐
 │  char *strcpy(char *dest, const char *src)                      │
 │  {                                                              │
 │      char *ptr = dest;                                          │
 │      while (*dest++ = *src++);                                  │
 │      return ptr;                                                │
 │  }                                                              │
 └─────────────────────────────────────────────────────────────────┘

    Para maior compreenção a linha:

 ┌─────────────────────────────────────────────────────────────────┐
 │      while (*dest++ = *src++);                                  │
 └─────────────────────────────────────────────────────────────────┘

    Pode ser expandida para:

 ┌─────────────────────────────────────────────────────────────────┐
 │      while ((*dest++ = *src++) != '\0');                        │
 └─────────────────────────────────────────────────────────────────┘

    O código gerado, no modelo small, se assemelha a:



 ┌─────────────────────────────────────────────────────────────────┐
 │  PROC    _strcpy                                                │
 │  ARG     dest:PTR, src:PTR                                      │
 │      push    si          ; Salva SI e DI                        │
 │      push    di                                                 │
 │                                                                 │
 │      mov     si,[dest]  ; Carrega os pointers                   │
 │                                                                 │
 │      push    si                  ; salva o pointer dest         │
 │                                                                 │
 │      mov     di,[src]                                           │
 │                                                                 │
 │  @@_strcpy_loop:                                                │
 │      mov     al,byte ptr [di]    ; Faz *dest = *src;            │
 │      mov     byte ptr [si],al                                   │
 │                                                                 │
 │      inc     di                  ; Incrementa os pointers       │
 │      inc     si                                                 │
 │                                                                 │
 │      or      al,al               ; AL == 0?!                    │
 │      jne     short @@_strcpy_loop ; Não! Continua no loop!      │
 │                                                                 │
 │      pop     ax                  ; Devolve o pointer dest.      │
 │                                                                 │
 │      pop     di          ; Recupera DI e SI                     │
 │      pop     si                                                 │
 │                                                                 │
 │      ret                                                        │
 │  ENDP                                                           │
 └─────────────────────────────────────────────────────────────────┘

    Este código foi  gerado  num  BORLAND  C++  4.02!  Repare que as
instruções:

 ┌─────────────────────────────────────────────────────────────────┐
 │      mov        al,byte ptr [di]    ; Faz *dest = *src;         │
 │      mov        byte ptr [si],al                                │
 └─────────────────────────────────────────────────────────────────┘

    Poderiam ser facilmente substituidas por um MOVSB se a ordem dos
registradores  de   índice   não   estivesse   trocada.    Porém   a
substituição,  neste  caso, causaria mais mal do que bem.  Num 386 as
instruções MOVSB,  MOVSW  e  MOVSD  consomem  cerca  de  7 ciclos de
máquina.  No mesmo microprocessador, a instrução MOV, movendo de  um
registrador  para  a memória consome apenas 2 ciclos.  Perderiamos 3
ciclos em cada iteração (2 MOVS  =  4 ciclos).  Numa string de 60000
bytes, perderiamos cerca de 180000 ciclos de  máquina...   Considere
que  cada  ciclo de máquina NAO é cada ciclo de clock.  Na realidade
um único ciclo de máquina equivale  a alguns ciclos de clock - vamos
pela média...  1 ciclo de máquina ╕ 2 ciclos de clock, no melhor dos
casos!

    Vamos dar uma olhada no mesmo código no modelo LARGE:



 ┌─────────────────────────────────────────────────────────────────┐
 │  PROC _strcpy                                                   │
 │  ARG  dest:PTR, src:PTR                                         │
 │  LOCAL temp:PTR                                                 │
 │      mov        dx,[word high dest]                             │
 │      mov        ax,[word low dest]                              │
 │      mov        [word high temp],dx                             │
 │      mov        [word low temp],ax                              │
 │                                                                 │
 │  @@_strcpy_loop:                                                │
 │      les        bx,[src]                                        │
 │                                                                 │
 │      inc        [word low src]                                  │
 │                                                                 │
 │      mov        al,[es:bx]                                      │
 │                                                                 │
 │      les        bx,[dest]                                       │
 │                                                                 │
 │      inc        [word low dest]                                 │
 │                                                                 │
 │      mov        [es:bx],al                                      │
 │                                                                 │
 │      or         al,al                                           │
 │      jne        short @@_strcpy_loop                            │
 │                                                                 │
 │      mov        dx,[word high temp]                             │
 │      mov        ax,[word low temp]                              │
 │      ret                                                        │
 │  _strcpy    endp                                                │
 └─────────────────────────────────────────────────────────────────┘

    Opa...  Cade  os  registradores  DI  e  SI?!   Os  pointers  são
carregados  varias  vezes  durante o loop!!!  QUE DESPERDICIO!  Essa
strcpy() é uma séria candidata a otimização!

    Eis  a  minha  implementação  para  todos  os modelos de memória
(assim como Strlen()!):



┌────────────────────────────────────────────────────────────────────┐
│   char *Strcpy(char *dest, const char *src)                        │
│   {                                                                │
│       _asm    push    es                                           │
│ #if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)│
│       _asm    push    ds                                           │
│       _asm    lds     si,src                                       │
│       _asm    les     di,dest                                      │
│ #else                                                              │
│       _asm    mov     si,ds                                        │
│       _asm    mov     es,si                                        │
│       _asm    mov     si,src                                       │
│       _asm    mov     di,dest                                      │
│ #endif                                                             │
│       _asm    push    si                                           │
│                                                                    │
│   Strcpy_loop:                                                     │
│       _asm    mov     al,[si]                                      │
│       _asm    mov     es:[di],al                                   │
│                                                                    │
│       _asm    inc     si                                           │
│       _asm    inc     di                                           │
│                                                                    │
│       _asm    or      al,al                                        │
│       _asm    jne     Strcpy_loop                                  │
│                                                                    │
│       _asm    pop     ax                                           │
│ #if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)│
│       _asm    mov     ax,ds                                        │
│       _asm    mov     dx,ax                                        │
│       _asm    pop     ds                                           │
│ #endif                                                             │
│       _asm    pop     es                                           │
│   }                                                                │
└────────────────────────────────────────────────────────────────────┘

    Deste jeito  os  pointers  são  carregados  somente  uma vez, os
registradores de  segmento  DS  e  ES  são  usados  para  conter  as
componentes  dos  segmentos  dos  pointers,  que podem ter segmentos
diferentes (no modelo large!), e os registradores SI e DI são usados
como indices separados para cada pointer!

    A parte critica do  código  é  o  interior  do  loop.   A  única
diferença  entre  essa rotina e a rotina anterior (a não ser a carga
dos pointers!) é a instrução:

┌────────────────────────────────────────────────────────────────────┐
│       _asm    mov     es:[di],al                                   │
└────────────────────────────────────────────────────────────────────┘

    Que consome 4 ciclos  de  máquina.   Poderiamos usar a instrução
STOSB, mas esta consome 4 ciclos de máquina num  386  (porém  5  num
486).   Num  486  a instrução MOV consome apenas 1 ciclo de máquina!
Porque MOV consome 4 ciclos  neste  caso?!  Por causa do registrador
de segmento explicitado!  Lembre-se que o registrador de segmento DS
é usado como default a não ser que usemos os registradores BP ou  SP
como indice!



    Se vc  está  curioso  sobre  temporização  de  instruções  asm e
otimização de código, consiga  a  mais  nova  versão  do  hypertexto
HELP_PC. Ele é muito bom. Quanto a livros, ai vão dois:

     Zen and the art of assembly language➠
     Zen and the art of code optimization➠

    Ambos de Michael Abrash.

    AHHHHHHHH...  Aos mais atenciosos e experientes:  Não coloquei o
prólogo  e nem o epílogo das rotinas em ASM intencionalmente.  Notem
que estou usando o modo  IDEAL  do TURBO ASSEMBLY para não confundir
mais ainda o pessoal  com  notações  do  tipo:   [BP+2],  [BP-6],  e
detalhes  do  tipo  decremento  do  stack  pointer  para alocação de
variáveis locais...  Vou deixar a coisa o mais simples possível para
todos...

    Da  mesma  forma:   Um  aviso  para  os  novatos...   NAO TENTEM
COMPILAR os códigos em ASM (Aqueles que começão por  PROC)...   Eles
são  apenas  uma  demonstração  da  maneira  como as funções "C" são
traduzidas para o assembly pelo compilador, ok?

    Well... próximo texto tem mais...





               ┏━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
                RBT   │   Curso de Assembly   │   Aula Nº 20 ┃ ┃
               ┗━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

  Por: Frederico Pissarra

    Impressionante como as  demonstrações gráficas (DEMOS) conseguem
ser  tão  rápidas  com  todas  aquelas  transformações   geométricas
(objetos  movimentando-se  no  espaço  tridimensional),  musicas  em
background, etc...  A complexidade sugere a utilização de rotinas em
ponto-flutuante    para    os    calculos    "cabeludos"...     Opa!
Ponto-flutuante?!   Mas  isso é muito lerdo!!!!  Toma muito tempo de
CPU...  E nem sempre o  feliz proprietário de um microcomputador tem
um 486DX ou um 386 com  co-processador!   Como  é  que  esses  caras
conseguem tanta velocidade?!

    A  resposta pode estar num método conhecido como "aritimética de
ponto-fixo", que é o objetivo deste texto!

    Imagine que possamos  escrever  um  número "quebrado" (com casas
decimais) da seguinte maneira:

   msb                                                         lsb
  ┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
  │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
  └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
           parte inteira          │       parte fracionária

    A "casa" mais a esquerda é o bit mais significativo, e a mais  a
direita o menos significativo.  Assim os 16 bits mais significativos
(parte  inteira)  nos diz a "parte inteira" do número (lógico, né?).
E os 16  bits  menos  significativos  (parte  fracionária) nos diz a
parte  fracionária  do  número (outra vez, lógico!).  De forma que o
bit menos significativo destes 32  bits  é equivalente a 2 elevado a
potência de -16 (ou seja: 1/65536). Eis um exemplo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  0000000000000000.1000000000000000b = 0.5 = 1/2                 │
 │  0000000000000000.0100000000000000b = 0.25 = 1/4                │
 │  0000000000000000.0010000000000000b = 0.125 = 1/8               │
 │  0000000000000000.1110000000000000b = 0.875                     │
 │  0000000000000001.1000000000000000b = 1.5 = 1 + 1/2             │
 │  0000000000000011.0010010000111111b = � (aprox.)                │  
 │  0000000000000000.1101110110110011b = cos(�/6) = 0.866 (aprox.) │((
 └─────────────────────────────────────────────────────────────────┘

    Não sei se deu para entender, mas do bit menos significativo até
o mais significativo, o expoente vai aumentando, só que o bit  menos
significativo  tem expoente -16.  Assim, o bit 1 tem expoente -15, o
seguinte -14, etc...  até  o  último,  15.   O  ponto  entre os dois
conjuntos  de  16  bits  foi  adicionado  apenas  para  facilitar  a
visualização no exemplo acima.

    Ok... então é possível representar "números quebrados"  em  dois
conjuntos de 16 bits... a pergunta é: Pra que?!

    Aritimética  com  números inteiros sempre é mais rápida do que a
aritimética com números em ponto-flutuante.  Tendo co-processador ou
não!   Mesmo  que  vc  tenha   um  486DX4  100MHz,  os  calculos  em



ponto-flutuante serão mais lerdamente efetuados  do  que  os  mesmos
calculos  com  números  inteiros  (usando os registradores da CPU!).
Neste ponto entra a  aritimética  de  ponto-fixo  (note que o "ponto
decimal" não  muda  de  posição...).   Vejamos  o  que  acontece  se
somarmos dois números em ponto fixo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  0.25 + 1.75 = 2.0                                              │
 │                                                                 │
 │    0000000000000000.0100000000000000b =    0.25                 │
 │  + 0000000000000001.1100000000000000b =  + 1.75                 │
 │  ────────────────────────────────────   ──────--                │
 │    0000000000000010.0000000000000000b =    2.00                 │
 └─────────────────────────────────────────────────────────────────┘

    Realmente  simples...  é apenas uma soma binária...  Suponha que
tenhamos um número em ponto fixo  no registrador EAX e outro no EDX.
O código para somar os dois números ficaria tão simples quanto:

 ┌─────────────────────────────────────────────────────────────────┐
 │  ADD     EAX,EDX                                                │
 └─────────────────────────────────────────────────────────────────┘

    O  mesmo  ocorre na subtração...  Lógicamente, a subtração é uma
adicão com o segundo  operando  complementado (complemento 2), então
não há problemas em fazer:

 ┌─────────────────────────────────────────────────────────────────┐
 │  SUB     EAX,EDX                                                │
 └─────────────────────────────────────────────────────────────────┘

    A adição ou subtração de dois números em ponto fixo consome de 1
a  2  ciclos de máquina apenas, dependendo do processador... o mesmo
não ocorre com aritimética em ponto-flutuante!

    A complicação começa a surgir na multiplicação e divisão de dois
números em  ponto-fixo.   Não  podemos  simplesmente  multiplicar ou
dividir como fazemos com a soma:

 ┌─────────────────────────────────────────────────────────────────┐
 │    0000000000000001.0000000000000000                            │
 │  * 0000000000000001.0000000000000000                            │
 │ ────────────────────────────────────-                           │
 │    0000000000000000.0000000000000000 + carry                    │
 └─────────────────────────────────────────────────────────────────┘

    Nultiplicando 1 por 1 deveriamos  obter  1,  e não 0.  Vejamos a
multiplicação de dois valores menores que 1 e maiores que 0:

 ┌─────────────────────────────────────────────────────────────────┐
 │    0000000000000000.100000000000000     0.5                     │
 │  * 0000000000000000.100000000000000   * 0.5                     │
 │ ──────────────────────────────────── ──────-                    │
 │    0100000000000000.000000000000000  16384.0                    │
 └─────────────────────────────────────────────────────────────────┘

    Hummm...  o  resultado  deveria  dar  0.25.   Se  dividirmos   o
resultado por 65536 (2^16) obteremos o resultado correto:



 ┌─────────────────────────────────────────────────────────────────┐
 │    0100000000000000.000000000000000 >> 16 =                     │
 │    0000000000000000.010000000000000       = 0.25                │
 └─────────────────────────────────────────────────────────────────┘

    Ahhh...  mas, e como ficam os números maiores ou iguais a 1?!  A
instrução IMUL dos microprocessadores  386  ou superiores permitem a
multiplicação de dois inteiros de 32 bits resultando num inteiro  de
64  bits  (o  resultado  ficará  em  dois  registradores  de 32 bits
separados!).  Assim, para multiplicarmos  dois números em ponto fixo
estabelecemos a seguinte regra:

 ┌─────────────────────────────────────────────────────────────────┐
 │  resultado = (n1 * n2) / 65536           ou                     │
 │  resultado = (n1 * n2) >> 16                                    │
 └─────────────────────────────────────────────────────────────────┘

    Assim, retornando ao primeiro caso de multiplicação (em  notação
hexa agora!):

 ┌─────────────────────────────────────────────────────────────────┐
 │   0001.0000h * 0001.0000h = 000000010000.0000h                  │
 │                                                                 │
 │   Efetuando o shift de 16 bits para a direita:                  │
 │                                                                 │
 │   00010000.0000h >> 16 = 0001.0000h                             │
 └─────────────────────────────────────────────────────────────────┘

    Em assembly isso seria tão simples como:

 ┌─────────────────────────────────────────────────────────────────┐
 │  PROC    FixedMul                                               │
 │  ARG     m1:DWORD, m2:DWORD                                     │
 │                                                                 │
 │      mov     eax,m1                                             │
 │      mov     ebx,m2                                             │
 │      imul    ebx                                                │
 │      shrd    eax,edx,16                                         │
 │      ret                                                        │
 │                                                                 │
 │  ENDP                                                           │
 └─────────────────────────────────────────────────────────────────┘

    A instrução IMUL, e  não  MUL,  foi  usada  porque os números de
ponto fixo são sinalizados (o bit mais significativo  é  o  sinal!).
Vale  aqui a mesma regra de sinalização para números inteiros:  Se o
bit mais significativo  estiver  setado  o  número  é negativo e seu
valor absoluto é obtido através do seu complemento (complemento  2).
Quanto a manipulação dos sinais numa multiplicação... deixe isso com
o IMUL! :)

    A divisão também tem as  suas complicações... suponha a seguinte
divisão:

 ┌─────────────────────────────────────────────────────────────────┐
 │   0001.0000h                                                    │
 │  ──────────── = 0000.0000h (resto = 0001.000h)                  │
 │   0002.0000h                                                    │
 └─────────────────────────────────────────────────────────────────┘



    A explicação deste resultado é simples:  estamos fazendo divisão
de dois números inteiros...  Na  aritimética inteira a divisão com o
dividendo menor que o divisor sempre resulta num quociente zero!

    Eis  a  solução:   Se  o  divisor  está  deslocado  16 bits para
esquerda  (20000h  é  diferente  de  2,  certo!?),  então precisamos
deslocar o dividendo 16 bits  para  esquerda  antes  de  fazermos  a
divisão!   Felizmente  os  processadores  386  e superiores permitem
divisões com dividendos de 64bits  e  divisores de 32bits.  Assim, o
deslocamento  de  16  bits  para  esquerda  do   dividendo   não   é
problemática!

 ┌─────────────────────────────────────────────────────────────────┐
 │  0001.0000h << 16 = 00010000.0000h                              │
 │                                                                 │
 │  00010000.0000h / 0002.0000h = 0000.8000h                       │
 │                                                                 │
 │      ou seja:                                                   │
 │                                                                 │
 │  1 / 2 = 0.5                                                    │
 └─────────────────────────────────────────────────────────────────┘

    Eis a rotina em assembly que demonstra esse algorritmo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  PROC    FixedDiv                                               │
 │  ARG     d1:DWORD, d2:DWORD                                     │
 │                                                                 │
 │      mov     eax,d1      ; pega dividendo                       │
 │      mov     ebx,d2      ; pega divisor                         │
 │                                                                 │
 │      sub     edx,edx                                            │
 │                                                                 │
 │      shld    edx,eax,16                                         │
 │      shl     eax,16                                             │
 │                                                                 │
 │      idiv    ebx                                                │
 │      ret                                                        │
 │                                                                 │
 │  ENDP                                                           │
 └─────────────────────────────────────────────────────────────────┘

    Isso tudo é muito interessante,  não?!  Hehehe... mas vou deixar
vc mais desesperado ainda:  A divisão  tem  um  outro  problema!   E
quanto aos sinais?!  O bit mais significativo de um inteiro pode ser
usado  para  sinalizar  o número (negativo = 1, positivo = 0), neste
caso teremos ainda que complementar o número para sabermos seu valor
absoluto.  Se simplesmente zeraramos EDX  e o bit mais significativo
estiver setado estaremos dividindo  um  número  positivo  por  outro
número  qualquer  (já  que  o  bit  mais  significativo  dos  64bits
resultantes será 0!).  Vamos  complicar  mais  um pouquinho o código
da divisão para sanar este problema:



 ┌─────────────────────────────────────────────────────────────────┐
 │  PROC    FixedDiv                                               │
 │  ARG     d1:DWORD, d2:DWORD                                     │
 │                                                                 │
 │      sub     cl,cl       ; CL = flag                            │
 │                          ; == 0 → resultado positivo.          │
 │                          ; != 0 → resultado negativo.          │
 │                                                                 │
 │      mov     eax,d1      ; pega dividendo                       │
 │                                                                 │
 │      or      eax,eax     ; é negativo?!                         │
 │      jns     @@no_chs1   ; não! então não troca sinal!          │
 │                                                                 │
 │      neg     eax         ; é! então troca o sinal e...          │
 │      inc     cl          ; incrementa flag.                     │
 │  @@no_chs1:                                                     │
 │                                                                 │
 │      mov     ebx,d2      ; pega divisor                         │
 │                                                                 │
 │      or      ebx,ebx     ; é negativo?!                         │
 │      jns     @@no_chs2   ; não! então não troca sinal!          │
 │                                                                 │
 │      neg     ebx         ; é! então troca sinal e...            │
 │      dec     cl          ; decrementa flag.                     │
 │  @@no_chs2:                                                     │
 │                                                                 │
 │      sub     edx,edx                                            │
 │                                                                 │
 │      shld    edx,eax,16                                         │
 │      shl     eax,16                                             │
 │                                                                 │
 │      div     ebx         ; divisão de valores positivos...      │
 │                          ; ... não precisamos de idiv!          │
 │                                                                 │
 │      or      cl,cl       ; flag == 0?                           │
 │      jz      @@no_chs3   ; sim! resultado é positivo.           │
 │                                                                 │
 │      neg     eax         ; não! resultado é negativo...         │
 │                          ; ... troca de sinal!                  │
 │  @@no_chs3:                                                     │
 │      ret                                                        │
 │                                                                 │
 │  ENDP                                                           │
 └─────────────────────────────────────────────────────────────────┘

    Se ambos os valores são negativos (d1 e d2)  então  o  resultado
será  positivo.   Note que se d1 é negativo CL é incrementado.  Logo
depois... se d2 também é  negativo,  CL é decrementado (retornando a
0).  A rotina então efetuará divisão de valores positivos e  somente
no final é que mudará o sinal do resultado, se for necessário!

    Uma  consideração  a  fazer  é:   Como "transformo" um número em
ponto flutuante em ponto-fixo e vice-versa?!

    Comecemos  pela transformação de números inteiros em ponto-fixo:
O nosso ponto-fixo está situado exatamente no meio de uma doubleword
(DWORD), o que  nos  dá  16  bits  de  parte  inteira  e 16 de parte
fracionária.  A transformação de um número inteiro para ponto-fixo é
mais que simples:



 ┌─────────────────────────────────────────────────────────────────┐
 │  FixP = I * 65536          ou                                   │
 │  FixP = I << 16                                                 │
 │                                                                 │
 │  onde FixP = Fixed Point (Ponto fixo)                           │
 │       I    = Integer (Inteiro)                                  │
 └─────────────────────────────────────────────────────────────────┘

    Desta forma os 16 bits superiores conterão o número inteiro e os
16  bits  inferiores  estarão  zerados  (um  inteiro  não  tem parte
fracionária, tem?!).

    Se quisermos obter a  componente  inteira  de um número de ponto
fixo basta fazer o shift de 16 bits para direita.

    A  mesma  regra   pode   ser   usada   para   transformação   de
ponto-flutuante para ponto-fixo, só que não usaremos shifting e  sim
multiplicaremos  explicitamente  por 65536.0!  Suponha que queiramos
transforma o número PI em ponto-fixo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  FixP = FloatP * 65536.0                                        │
 │                                                                 │
 │  FixP = 3.1415... * 65536.0 = 205887.4161                       │
 │  FixP = 205887                                                  │
 │                                                                 │
 │  FixP = 0003.2439h                                              │
 └─────────────────────────────────────────────────────────────────┘

    O que nos dá  uma  boa  aproximação (se transformarmos 32439h em
ponto flutuante novamente obteremos 3.14149475...).  Apenas a  parte
inteira  do  resultado  (205887.4161) nos interessa.  (205887).  Mas
apareceu um pequenino problema que talvez vc não tenha notado...

    Suponha que o  resultado  da  multiplicação  por  65536.0  desse
205887.865  (por  exemplo,  tá?!).  Esse número está mais próximo de
205888 do que de 205887!  Se tomarmos apenas a componente inteira do
resultado obteremos um erro ainda  maior  (ponto-fixo  não  é  muito
preciso, como vc pode notar  pelo  exemplo acima!).  Como fazer para
obter sempre a componente inteira mais  aproximada?!   A  solução  é
somar 0.5 ao resultado da multiplicação por 65536.0!

    Se a componente fracionária for maior ou igual  a  0.5  então  a
soma  da  componente  fracionária com 0.5 dará valor menor que 2.0 e
maior ou igual a 1.0 (ou  seja, a componente inteira dessa soma será
sempre 1.0).  Ao contrário, se a componente fracionária do resultado
da multiplicação por 65536.0 for menor que 0.5  então  a  componente
inteira  da  soma  dessa componente por 0.5 será sempre 0.0!  Então,
somando  o  resultado  da  multiplicação  com  0.5  podemos  ou  não
incrementar a componente  inteira  de  acordo  com  a proximidade do
número real com o inteiro mais próximo!

    Se a aproximação não for feita, o erro gira em torno  de  15e-6,
ou seja: 0.000015 (erro a patir da quinta casa decimal!).

    A transformação de um  número de ponto-flutuante para ponto-fixo
fica então:



 ┌─────────────────────────────────────────────────────────────────┐
 │  FixP = (FloatP * 65536.0) + 0.5                                │
 │                                                                 │
 │  FixP = (3.1415... * 65536.0) + 0.5 = 205887.4161 + 0.5         │
 │  FixP = 205887.9161                                             │
 │  FixP = 205887  (ignorando a parte fracionária!)                │
 │                                                                 │
 │  FixP = 0003.2439h                                              │
 └─────────────────────────────────────────────────────────────────┘

    A transformação contrária (de ponto-fixo para ponto-flutuante) é
menos  traumática, basta dividir o número de ponto fixo por 65536.0.
Eis algumas macros, em C, para as transformações:

 ┌─────────────────────────────────────────────────────────────────┐
 │  #define INT2FIXED(x)    ((long)(x) << 16)                      │
 │  #define FIXED2INT(x)    ((x) >> 16)                            │
 │  #define DOUBLE2FIXED(x) (long)(((x) * 65536.0) + 0.5)          │
 │  #define FIXED2DOUBLE(x) ((double)(x) / 65536.0)                │
 └─────────────────────────────────────────────────────────────────┘

    Aritimética de  ponto-fixo  é  recomendável  apenas  no  caso de
requerimento de velocidade e quando não necessitamos de precisão nos
calculos.  O menor número  que  podemos  armazenar  na  configuração
atual  é   ▒1.5259e-5   (1/65536)   e   o   maior   é  ▒32767.99998,
aproximadamente.  Números maiores  ou  menores  que  esses  não  são
representáveis.   Se  o seu programa pode extrapolar esta faixa, não
use   ponto-fixo,   vc   obterá   muitos   erros   de   precisão  e,
ocasionalmente, talvez até um erro de "Division By Zero".

    Atenção...   A  implementação dos procedimentos (PROC) acima são
um pouquinho diferentes para mixagem de código...  Os compiladores C
e PASCAL atuais utilizam o par DX:AX para retornar um DWORD,  assim,
no fim de cada PROC e antes do retorno coloque:

 ┌─────────────────────────────────────────────────────────────────┐
 │  shld    edx,eax,16                                             │
 │  shr     eax,16                                                 │
 └─────────────────────────────────────────────────────────────────┘

    Ou faça melhor ainda: modifique os códigos!

    Eis a minha implementação  para  as  rotinas FixedMul e FixedDiv
para mixagem de código com C ou TURBO PASCAL:

 ┌─────────────────────────────────────────────────────────────────┐
 │  /*                                                             │
 │  ** Arquivo de cabeçalho FIXED.H                                │
 │  */                                                             │
 │  #if !defined(__FIXED_H__)                                      │
 │  #define __FIXED_T__                                            │
 │                                                                 │
 │  /* Tipagem */                                                  │
 │  typedef long    fixed_t;                                       │
 │                                                                 │
 │  /* Macros de conversão */                                      │
 │  #define INT2FIXED(x)    ((fixed_t)(x) << 16)                   │
 │  #define FIXED2INT(x)    ((int)((x) >> 16))                     │
 │  #define DOUBLE2FIXED(x) ((fixed_t)(((x) * 65536.0) + 0.5))     │



 │  #define FIXED2DOUBLE(x) ((double)(x) / 65536.0)                │
 │                                                                 │
 │  /* Declaração das funções */                                   │
 │  fixed_t pascal FixedMul(fixed_t, fixed_t);                     │
 │  fixed_t pascal FixedDiv(fixed_t, fixed_t);                     │
 │                                                                 │
 │  #endif                                                         │
 └─────────────────────────────────────────────────────────────────┘
 ┌─────────────────────────────────────────────────────────────────┐
 │  {*** Unit FixedPt para TURBO PASCAL ***}                       │
 │  UNIT FIXEDPT;                                                  │
 │                                                                 │
 │  {} INTERFACE {}                                                │
 │                                                                 │
 │  {*** Tipagem ***}                                              │
 │  TYPE                                                           │
 │      TFixed  = LongInt;                                         │
 │                                                                 │
 │  {*** Declaração das funções ***}                               │
 │  FUNCTION FixedMul(M1, M2 : TFixed) : TFixed;                   │
 │  FUNCTION FixedDiv(D1, D2 : TFixed) : TFixed;                   │
 │                                                                 │
 │  {} IMPLEMENTATION {}                                           │
 │                                                                 │
 │  {*** Inclui o arquivo .OBJ compilado do código abaixo ***}     │
 │  {$L FIXED.OBJ}                                                 │
 │                                                                 │
 │  {*** Declara funções como externas ***}                        │
 │  FUNCTION FixedMul(M1, M2 : TFixed) : TFixed; EXTERN;           │
 │  FUNCTION FixedDiv(D1, D2 : TFixed) : TFixed; EXTERN;           │
 │                                                                 │
 │  {*** Fim da Unit... sem inicializações! ***}                   │
 │  END.                                                           │
 └─────────────────────────────────────────────────────────────────┘
 ┌─────────────────────────────────────────────────────────────────┐
 │  ; FIXED.ASM                                                    │
 │  ; Módulo ASM das rotinas de multiplicação e divisão em         │
 │  ; ponto fixo.                                                  │
 │                                                                 │
 │  ; Modelamento de memória e modo do compilador.                 │
 │  IDEAL                                                          │
 │  MODEL LARGE,PASCAL                                             │
 │  LOCALS                                                         │
 │  JUMPS                                                          │
 │  P386        ; Habilita instruções do 386                       │
 │                                                                 │
 │  ; Declara os procedimentos como públicos                       │
 │  GLOBAL FixedMul : PROC                                         │
 │  GLOBAL FixedDiv : PROC                                         │
 │                                                                 │
 │  ; Inicio do segmento de código.                                │
 │  CODESEG                                                        │
 │                                                                 │
 │  PROC    FixedMul                                               │
 │  ARG     m1:DWORD, m2:DWORD                                     │
 │                                                                 │
 │      mov     eax,[m1]                                           │
 │      mov     ebx,[m2]                                           │
 │      imul    ebx                                                │



 │      shr     eax,16  ; Coloca parte fracionária em AX.          │
 │                      ; DX já contém parte inteira!              │
 │      ret                                                        │
 │                                                                 │
 │  ENDP                                                           │
 │                                                                 │
 │  ; Divisão em ponto fixo.                                       │
 │  ; d1 = Dividendo, d2 = Divisor                                 │
 │  PROC    FixedDiv                                               │
 │  ARG     d1:DWORD, d2:DWORD                                     │
 │                                                                 │
 │      sub     cl,cl       ; CL = flag                            │
 │                          ; == 0 → resultado positivo.           │
 │                          ; != 0 → resultado negativo.           │
 │                                                                 │
 │      mov     eax,[d1]    ; pega dividendo                       │
 │                                                                 │
 │      or      eax,eax     ; é negativo?!                         │
 │      jns     @@no_chs1   ; não! então não troca sinal!          │
 │                                                                 │
 │      neg     eax         ; é! então troca o sinal e...          │
 │      inc     cl          ; incrementa flag.                     │
 │  @@no_chs1:                                                     │
 │                                                                 │
 │      mov     ebx,[d2]    ; pega divisor                         │
 │                                                                 │
 │      or      ebx,ebx     ; é negativo?!                         │
 │      jns     @@no_chs2   ; não! então não troca sinal!          │
 │                                                                 │
 │      neg     ebx         ; é! então troca sinal e...            │
 │      dec     cl          ; decrementa flag.                     │
 │  @@no_chs2:                                                     │
 │                                                                 │
 │      sub     edx,edx     ; Prepara para divisão.                │
 │      shld    edx,eax,16                                         │
 │      shl     eax,16                                             │
 │                                                                 │
 │      div     ebx         ; divisão de valores positivos...      │
 │                          ; ... não precisamos de idiv!          │
 │                                                                 │
 │      or      cl,cl       ; flag == 0?                           │
 │      jz      @@no_chs3   ; sim! resultado é positivo.           │
 │                                                                 │
 │      neg     eax         ; não! resultado é negativo...         │
 │                          ; ... troca de sinal!                  │
 │  @@no_chs3:                                                     │
 │                                                                 │
 │      ;                                                          │
 │      ; Apenas adequa para o compilador                          │
 │      ;                                                          │
 │      shld    edx,eax,16  ; DX:AX contém o DWORD                 │
 │      shr     eax,16                                             │
 │                                                                 │
 │      ret                                                        │
 │                                                                 │
 │  ENDP                                                           │
 │                                                                 │
 │  END                                                            │
 └─────────────────────────────────────────────────────────────────┘
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  Por: Frederico Pissarra

    Olá!!...  Acho que você concorda comigo que essa série de textos
não estaria completa se eu  não  falasse  alguma coisa a respeito de
progrmação da placa de vídeo VGA, né?!  Acho que nós temos razão  em
pensar assim! :)

    Inicialmente começarei a descrever  a  placa  VGA, depois vem as
descrições da SVGA e VESA.  Não pretendo gastar "trocentas" horas de
digitação e depuração de código na descrição desses padrões..  quero
apenas dar uma idéia geral do funcionamento desses dispositivos para
que você possa caminhar com as próprias pernas mais tarde...

     Video Graphics Array➠

    O  padrão  VGA é o sucessor dos padrões EGA e CGA, todos criados
pela IBM...  A diferença  básica  do  VGA  para  os  outros dois é o
aumento da resolução e de cores.  Eis uma comparação  dos  modos  de
maior  resolução  e  cores  desses três padrões (aqui estão listados
apenas os modos gráficos!):

     ┌────────────────────┬──────────┬────────────┬───────────┐
     │                    │   CGA    │    EGA     │   VGA     │
     ├────────────────────┼─────────-┼────────────┼───────────┤
     │ Maior resolução    │ 640x200  │   640x350  │  640x480  │
     ├────────────────────┼─────────-┼────────────┼───────────┤
     │  Maior número de   │    4     │     16     │    16     │
     │       cores        │(320x200) │  (640x350) │ (640x480) │
     │                    │          │            │           │
     │                    │          │            │    256    │
     │                    │          │            │ (320x200) │
     └────────────────────┴──────────┴────────────┴───────────┘

    O  padrão  VGA  suporta  até 256 cores simultanemente no modo de
vídeo 13h (320x200x256).  E no modo de mais alta resolução suporta o
mesmo número de cores que a EGA, que são apenas 16.

    Quanto ao  número  de  cores,  as  placas  EGA  e  VGA  são mais
flexíveis  que  a  irmã   mais   velha   (a   CGA).   As  cores  são
"reprogramáveis", isto é, de uma palette de 256k cores (256 * 1024 =
262144 cores), na VGA, podemos escolher 256...  Duma palette  de  64
cores  podemos  usar  16, na EGA...  A VGA é, sem sombra de dúvidas,
superior!

    A  forma como podemos selecionar essas cores todas será mostrada
mais abaixo (Como  sempre  as  coisas  boas  são sempre deixadas pra
depois, né?! hehe).

    Em tempo:  O modo 640x480 (16 cores) será usado como exemplo nas
próximas listagens dos textos daqui pra frente...  O modo gráfico de
320x200 com 256 cores será discutido em outra oportunidade, bem como
o famoso MODE X (modo de vídeo não documentado da VGA - e largamente
descrito por Michael Abrash em  seus  artigos  para  a  revista  Dr.
Dobb's).



     Memória de vídeo➠

    Existe  um  grande  obstáculo  com  relação  a modos gráficos de
resoluções altas:   A  segmentação  de  memória!   Lembre-se  que os
processadores Intel enxergam  a  memória  como  blocos  de  64k  não
sequenciados  (na  verdade,  sobrepostos!)...   No  modo  gráfico de
resolução 640x480 da VGA (que  suporta  16 cores no máximo), suponha
que cada byte da memória de vídeo armazenasse  2  pixeis  (16  cores
poderia  equivaler a 4 bits, não poderia?!)...  Well isso nos dá 320
bytes por linha (meio byte por pixel → 640 / 2 = 320!).

    Com os 320 bytes por  linha  e  480 linhas teriamos 153600 bytes
numa tela cheia!  Ocupando  3  segmentos  da  memória  de  vídeo  (2
segmentos  contíguos  completos  e mais 22528 bytes do terceiro!)...
Puts...  Imagine a complexidade  do  algoritmo que escreve apenas um
ponto no vídeo!  Seria necessário selecionarmos o segmento do  pixel
e  o  offset...  isso  pra  aplicativos gráficos de alta performance
seria um desastre!

    A  IBM  resolveu  esse  tipo  de  problema  criando  "planos" de
memória...  Cada plano equivale a um bit de um pixel.  Dessa  forma,
se  em  um  byte  temos  oito  bits e cada plano armazena 1 bit de 1
pixel... em um byte de  cada  plano  teremos  os 8 bits de 8 pixeis.
Algo como:  O byte no plano 0 tem os oito bits 0 de  oito  pixeis...
no  plano  1  temos  os  oito  bits  1 de oito pixeis... e assim por
diante.  De forma que o  circuito  da VGA possa "sobrepor" os planos
para formar os quatro bits de um  único  pixel...   A  representação
gráfica abaixo mostra a sobreposição dos planos:

            ┌────────────────────────────────────────────┐
          ┌─┴──────────────────────────────────────────┐ │
        ┌─┴──────────────────────────────────────────┐ │ │
      ┌─┴──────────────────────────────────────────┐ │ │ │
      │                                            │ │ │ │
      │                                            │ │ │ │
      │                                            │ │ │3│
      │                                            │ │2├─┘
      │                                            │1├─┘
      │                                          0 ├─┘
      └────────────────────────────────────────────┘

    Esses  são  os  quatro  planos  da memória de vídeo.  O plano da
frente é  o  plano  0,  incrementando  nos  planos  mais interiores.
Suponha que na posição inicial de cada plano tenhamos  os  sequintes
bytes:

 ┌───────────────────────────────────────────────────────────────┐
 │  Plano 0: 00101001b                                           │
 │  Plano 1: 10101101b                                           │
 │  Plano 2: 11010111b                                           │
 │  Plano 3: 01010100b                                           │
 └───────────────────────────────────────────────────────────────┘

    Os  bits  mais  significativos  de  cada  plano formam um pixel:
(0110b), os  bits  seguintes  o  segundo  pixel  (0011b), o terceiro
(1100b), e assim por diante até o oitavo pixel (1110b).  Como  temos
16 cores no modo 640x480, cada pixel tem 4 bits de tamanho.



    Com  esse  esquema  biruta temos um espaço de apenas 38400 bytes
sendo usados para cada plano  de  vídeo...   Se cada byte suporta um
bit de cada pixel então temos que uma linha tem 80 bytes de  tamanho
(640 / 8).  Se temos 480 linhas, teremos 38400 bytes por plano.

    Tome  nota  de duas coisas... estamos usando um modo de 16 cores
como exemplo para facilitar  o  entendimento  (os modos de 256 cores
são mais complexos!) e esses 38400 bytes em cada plano de bits é  um
espaço  de  memória  que pertence à placa de vídeo e é INACESSíVEL a
CPU!!!!  Apenas a placa de vídeo pode ler e gravar nessa memória.  A
placa VGA (e  também  a  EGA)  usam  a  memória  RAM do sistema para
saberem quais  posições  de  um  (ou  mais)  planos  de  bits  serão
afetados.  Isso é assunto para o próximo tópico:

     A memória do sistema:➠

    Os  adaptadores  VGA  usam  o  espaço  de "memória linear" entre
0A0000h  e  0BFFFFh  (todo  o  segmento  0A000h  e  todo  o segmento
0B000h)...  Essa memória é apenas uma área de  rascunho,  já  que  a
placa  VGA  tem  memória  própria...   A  CPU precisa de uma memória
fisicamente presente  para  que  possa  escrever/ler  dados... daí a
existencia desses dois segmentos contíguos de memória, mas a VGA não
os usa da mesma forma que a CPU!

    Citei dois segmentos contíguos... mas não existe a limitação  de
apenas  um  segmento?!   Well... existe... o segmento 0B000h é usado
apenas nos modos-texto (onde o  segmento 0B800h é usado...  0B000h é
para o adaptador monocromático - MDA)... os modos-gráficos  utilizam
o  segmento 0A000h (a não ser aqueles modos gráficos compatíveis com
a CGA!).

    A memória do sistema é usada  como rascunho pela VGA (e pela EGA
também!!)...  A VGA colhe  as  modificações  feitas  na  memória  do
sistema e transfere para a memória de vídeo.  A forma com que isso é
feito  depende  do  modo  com  que programamos a placa de vídeo para
fazê-lo... podemos modificar  um  plano  de  bits  por vez ou vários
planos, um bit por vez, vários bits de uma vez, etc.  Na  realidade,
dependendo  do  modo  com que os dados são enviados para a placa VGA
não precisamos  nem  ao  menos  saber  O  QUE  estamos escrevendo na
memória do sistema, a VGA toma conta de ajustar a memória  de  vídeo
por  si  só,  usando apenas o endereço fornecido pela CPU para saber
ONDE deve fazer a modificação!

     Selecionando os planos de bits...➠

    Em todos os modos de  escrita precisamos selecionar os planos de
bits que serão afetados...  Isso é feito através de  um  registrador
da  placa  VGA:   MapMask...  Porém, antes de sairmos futucando tudo
quanto é endereço de I/O da  placa VGA precisamos saber COMO devemos
usá-los!

    A maioria dos registradores da placa VGA  estão  disponíveis  da
seguinte  maneira:  Primeiro informamos à placa qual é o registrador
que queremos acessar e  depois  informamos  o  dado a ser escrito ou
lido...  A técnica é a seguinte:  escrevemos num endereço de  I/O  o
número  do  registrador... no endereço seguinte o dado pode ser lido



ou escrito...

    No caso de MapMask, este  registrador  é  o número 2 do CIRCUITO
SEQUENCIADOR  da  placa  VGA.   O  circuito  sequenciador  pode  ser
acessado pelos endereços de I/O 3C4h e 3C5h (3C4h conterá  o  número
do registro e 3C5h o dado!).  Eis a estrutura do registro MapMask:

                            7 6 5 4 3 2 1 0
                           ┌─┬─┬─┬─┬─┬─┬─┬─┐
                           │?│?│?│?│ │ │ │ │
                           └─┴─┴─┴─┴─┴─┴─┴─┘
                                    │ │ │ │
                                    │ │ │ └── plano 0
                                    │ │ └──── plano 1
                                    │ └────── plano 2
                                    └──────── plano 3

    De  acordo  com  o  desenho  acima...  os quatro bits inferiores
informam a placa VGA qual dos planos será modificado.  Lembre-se que
cada plano tem um bit de um pixel (sendo o plano 0 o proprietário do
bit menos significativo).  Vamos a nossa primeira rotina:

 ┌───────────────────────────────────────────────────────────────--┐
 │  ; VGA1.ASM                                                     │
 │  ; Compile com:                                                 │
 │  ;                                                              │
 │  ;   TASM vga1                                                  │
 │  ;   TLINK /x/t vga1                                            │
 │  ;                                                              │
 │  ideal                                                          │
 │  model tiny                                                     │
 │  locals                                                         │
 │  jumps                                                          │
 │                                                                 │
 │  codeseg                                                        │
 │                                                                 │
 │  org 100h                                                       │
 │  start:                                                         │
 │      mov     ax,12h      ; Poe no modo 640x480                  │
 │      int     10h                                                │
 │                                                                 │
 │      mov     ax,0A000h   ; Faz ES = 0A000h                      │
 │      mov     es,ax                                              │
 │      sub     bx,bx       ; BX será o offset!                    │
 │                                                                 │
 │      mov     dx,03C4h    ; Aponta para o registro               │
 │      mov     al,2        ; "MapMask"                            │
 │      out     dx,al                                              │
 │                                                                 │
 │      inc     dx          ; Incrementa endereço de I/O           │
 │                                                                 │
 │      mov     al,0001b    ; Ajusta para o plano 0                │
 │      out     dx,al                                              │
 │                                                                 │
 │      mov     [byte es:bx],0FFh   ; Escreve 0FFh                 │
 │                                                                 │
 │      mov     al,0100b    ; Ajusta para o plano 2                │
 │      out     dx,al                                              │
 │                                                                 │



 │      mov     [byte es:bx],0FFh   ; Escreve 0FFh                 │
 │                                                                 │
 │      sub     ah,ah       ; Espera uma tecla!                    │
 │      int     16h         ; ... senão não tem graça!!! :)        │
 │                                                                 │
 │      mov     ax,3        ; Volta p/ modo texto 80x25            │
 │      int     10h                                                │
 │                                                                 │
 │      int     20h         ; Fim do prog                          │
 │                                                                 │
 │  end start                                                      │
 └───────────────────────────────────────────────────────────────--┘

    Depois de compilar e rodar  o  VGA1.COM você vai ver uma pequena
linha magenta no canto superior esquerdo do vídeo...  Se você quiser
que apenas o pixel em (0,0) seja aceso, então mude o valor 0FFh  nas
instruções  "mov  [byte es:bx],0FFh" para 80h.  O motivo para isso é
que cada byte tem apenas um  bit  de  um  pixel, isto é, cada bit do
byte equivale a um bit do pixel... necessitamos  alterar  os  quatro
planos  de  bits  para setarmos os quatro bits de cada pixel (quatro
bits nos dão 16 combinações)... assim,  se  um byte tem oito bits, o
primeiro byte dos quatro planos de bits tem os oito pixeis iniciais,
sendo o bit mais significativo do primeiro  byte  de  cada  plano  o
primeiro pixel.

    Deu  pra  notar  que  apenas  modificamos  os planos 0 e 2, né?!
Notamos também que desta maneira  não  temos como alterarar um único
pixel...  sempre  alteraremos  os  oito  pixels!!    Mas,   não   se
preocupe...  existem  outros  recursos na placa VGA...  Entendendo o
esquema de "planos de bits" já está bom por enquando...

    Até a próxima...
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  Por: Frederico Pissarra

    Alguma vez aconteceu de você ter aquela rotina quase concluída e
quando foi testá-la viu  que  estava faltando alguma coisa?!  Bem...
se não aconteceu você é um sortudo...  Quando eu estava começando  a
entender  o funcionamento da placa VGA me dispus a construir rotinas
básicas de  traçagem  de  linhas  horizontais  e verticais... porém,
quando tinha algum bitmap atrás da linha acontecia  uma  desgraça!!!
Parte do bitmap sumia ou era substituído por uma sujeirinha chata!

    Obviamente  eu  ainda  não  tinha  dominado  o  funcionamento da
placa... por isso, vamos continuar com os nossos estudos...

     A mascara de bits e os LATCHES da VGA.➠

    Existe uma maneira  de  não  alterarmos  bits indesejáveis em um
byte de cada plano...  Suponha que queiramos modificar apenas o  bit
mais  significativo  de  um  byte  nos  planos  de  bits, deixando o
restante exatamente como estavam antes!

    Well...  Isso pode ser feito  de  duas formas:  Primeiro lemos o
byte de um plano, realizamos um OR ou um AND com esse byte e o  byte
com  o  bit  a  ser alterado (zerando-o ou setando-o de acordo com a
modificação que faremos...  veja  as  instruções  AND  e  OR num dos
textos iniciais do curso de ASM para ter um  exemplo  de  como  isso
pode  ser feito!)... depois da operação lógica, escrevemos o byte na
mesma posição... Essa é a maneira mais dispendiosa!

    A placa  VGA  permite  que  criemos  uma  mascara  de  bits para
podermos alterar apenas aqueles bits desejados...  Isso é feito pelo
registrador BitMask.  Mas, antes temos que  ler  o  byte  inteiro...
hummm...  acontece que existe um registrador intermediário, interno,
que retém o último byte lido de um plano de bits... esse registrador
é conhecido como LATCH.

    Basta ler um byte da memória  do sistema que os bytes dos quatro
planos de bits vão para seus LATCHES...  Depois precisamos  mascarar
os  bits  que  não queremos modificar no registrador BitMask para só
então escrever na memória  do  sistema  (no  plano de bits!)...  Não
esquecendo de setar os planos  de  bits  que  queremos  alterar  via
MapMask, como visto no último texto!

    O  funcionamento  dos  latches  em  conjunto  com  BitMask  é  o
seguinte:   Uma vez carregados os latches, apenas os bits ZERADOS de
BitMask serão copiados de volta  para os planos de bits selecionados
por  MapMask.   Em  contrapartida,  os  bits  SETADOS   em   BitMask
correspondem  aos  bits  vindos  da  memória  do  sistema,  que  são
fornecidos  pela  CPU.   Dessa  maneira  a  nossa rotina não tem que
propriamente ler o conteúdo de  um  plano  de bits (aliás, o que for
lido pela CPU pode muito bem ser ignorado!)... não necessitamos  nem
ao  menos  efetuar  operações  lógicas  para  setar  ou  resetar  um
determinado bit do byte que será escrito num plano de bits!

    Vímos  no  último  texto  que  o  registro  MapMask faz parte do



circuito SEQUENCIADOR da VGA.  O registro BitMask está localizado em
outro circuito.  Mais  exatamente  no  controlador gráfico (Graphics
Controller  - que chamaremos de GC)...  O funcionamento é o mesmo do
que o circuito sequenciador, em  termos  de endereços de I/O, citado
no último texto:  Primeiro devemos informar o número do  registro  e
depois  o valor.  O GC pode ser acessado a partir do endereço de I/O
03CEh e o número do registro BitMask é 8.

    Eis nosso segundo exemplo:

 ┌─────────────────────────────────────────────────────────────────┐
 │  ; VGA2.ASM                                                     │
 │  ; Compile com:                                                 │
 │  ;                                                              │
 │  ;   TASM vga2                                                  │
 │  ;   TLINK /x/t vga2                                            │
 │  ;                                                              │
 │  ideal                                                          │
 │  model tiny                                                     │
 │  locals                                                         │
 │  jumps                                                          │
 │                                                                 │
 │  codeseg                                                        │
 │                                                                 │
 │  org 100h                                                       │
 │  start:                                                         │
 │      mov     ax,12h      ; Poe no modo 640x480                  │
 │      int     10h                                                │
 │                                                                 │
 │      mov     ax,0A000h   ; Faz ES = 0A000h                      │
 │      mov     es,ax                                              │
 │      sub     bx,bx       ; BX será o offset!                    │
 │                                                                 │
 │      mov     dx,03C4h    ; Seleciona planos 0 e 2...            │
 │                                                                 │
 │      mov     ax,0502h    ; ídem a fazer: mov al,2               │
 │                          ;               mov ah,0101b           │
 │                                                                 │
 │      out     dx,ax                                              │
 │                                                                 │
 │      mov     dx,03CEh    ; Mascara todos os bits,               │
 │      mov     ax,8008h    ;  exceto o bit 7                      │
 │      out     dx,ax                                              │
 │                                                                 │
 │      mov     al,[byte es:bx]     ; carrega os latches da VGA    │
 │                                  ;  note que AL não nos         │
 │                                  ;  interessa!!!                │
 │      mov     [byte es:bx],0FFh   ; Escreve 0FFh                 │
 │                                                                 │
 │      sub     ah,ah       ; Espera uma tecla!                    │
 │      int     16h         ; ... senão não tem graça!!! :)        │
 │                                                                 │
 │      mov     ax,3        ; Volta p/ modo texto 80x25            │
 │      int     10h                                                │
 │                                                                 │
 │      int     20h         ; Fim do prog                          │
 │                                                                 │
 │  end start                                                      │
 └─────────────────────────────────────────────────────────────────┘



    Temos algumas novidades aqui...  Primeiro:  é possível  escrever
o  número  de um registro e o dado quase que ao mesmo tempo... basta
usar a instrunção OUT DX,AX - recorra a textos anteriores para ver o
funcionamento dessa  instrução!.   Segundo:   mesmo  escrevendo 0FFh
(todos os bits setados) na memória do sistema, apenas o bit que  não
está mascarado será modificado, graças ao BitMask!!  Terceiro:  Mais
de  um  plano  de  bits  pode ser alterado ao mesmo tempo!  Note que
nesse código escrevemos na  memória  de  vídeo  apenas  uma vez e os
planos 0 e 2 foram alterados (continua a cor MAGENTA, não?!).

     Problemas à vista!➠

    Ok... aparentemente a  coisa  funciona  bem...  dai  eu faço uma
simples  pergunta:   O que aconteceria se o ponto em (0,0) estivesse
inicialmente "branco" e usassemos a rotina acima?!

    Hummmm...  Se o ponto é  branco,  a  cor  é 15...  15 é 1111b em
binário, ou seja, todos os planos de bits teriam o bit 7 do primeiro
byte setados...  A rotina acima "seta" os bits 7  do  primeiro  byte
dos planos 0 e 2... assim  a  cor CONTINUARIA branca!!  MAS COMO SOU
TEIMOSO, EU QUERO MAGENTA!!!

    A solução seria colocar as seguintes linhas antes  da  instrução
"sub ah,ah" na listagem acima:

 ┌─────────────────────────────────────────────────────────────────┐
 │  mov     dx,03C4h    ; Seleciona os planos 1 e 3                │
 │  mov     ax,0A02h                                               │
 │  out     dx,ax                                                  │
 │                                                                 │
 │  mov     [byte es:bx],0 ; escreve 0 nos planos 1 e 3            │
 └─────────────────────────────────────────────────────────────────┘

    Precisamos zerar os bits 7  dos  planos  1  e 3...  Note que nas
linhas acima não carreguei os latches da VGA através  de  leitura...
aliás... não carreguei de forma  alguma.   Não preciso fazer isso os
latches dos planos 1 e 3 não foram  alterados  desde  a  sua  última
leitura...   repare  que  não  "desmascarei"  os  bits  no  registro
BitMask... dai não ter  a  necessidade  de mascará-los de novo... só
preciso escrever 0 nos planos 1 e 3 para que o bit 7 seja alterado.

    Puts... que  mão-de-obra!!...   Felizmente  existem  meios  mais
simples  de  fazer  isso tudo...  Ahhhhhh, mas é claro que isso fica
pra um próximo texto! :))
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  Por: Frederico Pissarra

    Confesso a todos vocês  que  a  experiência  que venho tendo com
relação a programação da placa VGA começou com a leitura de  artigos
e de um livro  de  um  camarada  chamado Michael Abrash...  Gostaria
muito de conseguir outros livros desse sujeito!!  Aliás, se  puderem
colocar  as  mãos  num livrão chamado "Zen of Graphics Programming",
garanto  que  não  haverá arrependimentos!  É um excelente livro com
MUITOS macetes, rotinas e explicações  sobre a VGA...  Tudo isso com
bom humor!!! :)

    Outra boa aquisição, pelo menos com  relação ao capítulo 10, é o
livro "Guia do Programador para as placas  EGA  e  VGA"  da  editora
CIENCIA  MODERNA  (o  autor  é  Richard  E.  Ferraro).  Explicitei o
capítulo 10 porque acho que  esse  livro  só  não é tão bom devido a
falhas de tradução (coisa que acontece com  quase  todos  os  livros
traduzidos   no  Brasil!)...   O  capítulo  10  é  tão  somente  uma
referência (enorme e confusa,  mas  quebra  bem  o galho) a todos os
registradores da VGA.  Esse é um dos livros que adoraria poder ter o
original, em inglês!

    Onde paramos?!

    Ahhh... sim... até aqui vimos o  modo  de  escrita  "normal"  da
placa VGA.  Esse modo de escrita é o usado pela BIOS e  é  conhecido
como  "modo  de  escrita 0".  Antes de passarmos pra outros modos de
escrita  vale  a   pena   ver   o   funcionamento   de  outros  dois
registradores:   o  "Enable  Set/Reset"  e  o  "Set/Reset".    Esses
registros,  como  você vai ver, facilita muito o trabalho de escrita
nos planos de bits.

     Ligando e desligando bits...➠

    Na listagem do text 22 vimos que é possível a escrita em mais de
um plano de bits ao mesmo tempo (basta habilitar em MapMask).  Vimos
também que  os  planos  de  bits  não  habilitados  para escrita via
MapMask não são automaticamente  zerados...  lembra-se  do  caso  do
pixel branco que queriamos transformar em magenta?!

    Com tudo isso, tinhamos que fazer pelo menos 3 acessos à memória
do  sistema:  Uma leitura para carregar os latches, uma escrita para
setar bits nos planos selecionados, e mais uma escrita para zerar os
bits dos outros planos...  Isso  sem contar com os registradores que
teremos que atualizar:  MapMask  e  BitMask.   Surpreendentemente  a
instrução  OUT  é uma das que mais consomem ciclos de máquina da CPU
(especialmente nos 386s e 486s! Veja no seu HELP_PC).

    Na tentativa de  reduzir  os  acessos  à  memória  do sistema (e
indiretamenta aos planos de bits!), lançaremos mão dos registradores
"Enable Set/Reset" e "Set/Reset".  Eis a descrição deles:



         REGISTRO ENABLE SET/RESET✱

                            7 6 5 4 3 2 1 0
                           ┌─┬─┬─┬─┬─┬─┬─┬─┐
                           │?│?│?│?│ │ │ │ │
                           └─┴─┴─┴─┴─┴─┴─┴─┘
                                    │ │ │ │
                                    │ │ │ └── S/R bit 0
                                    │ │ └──── S/R bit 1
                                    │ └────── S/R bit 2
                                    └──────── S/R bit 3

         REGISTRO SET/RESET✱

                            7 6 5 4 3 2 1 0
                           ┌─┬─┬─┬─┬─┬─┬─┬─┐
                           │?│?│?│?│ │ │ │ │
                           └─┴─┴─┴─┴─┴─┴─┴─┘
                                    │ │ │ │
                                    │ │ │ └── plano 0
                                    │ │ └──── plano 1
                                    │ └────── plano 2
                                    └──────── plano 3

    O registrador "Enable Set/Reset" informa  a placa VGA quais bits
do registrador "Set/Reset" vão ser transferidos para  os  planos  de
bits.  Note que cada bit de "Set/Reset" está associado a um plano de
bits!  Os bits não habilitados em "Enable Set/Reset" virão da CPU ou
dos latches, dependendo do conteúdo  de  BitMask  -  como  vimos  no
exemplo do texto 22.

    Não sei se você percebeu, mas podemos agora escrever quatro bits
diferentes  nos quatro planos de bits ao mesmo tempo...  Se setarmos
os quatro bits de "Enable  Set/Reset", os quatro bits em "Set/Reset"
serão transferidos para a memória de vídeo.  Nesse caso o que a  CPU
enviar para a memória do sistema será ignorado (já que é "Set/Reset"
que está fornecendo os dados!).

    Os registradores MapMask  e  BitMask  continuam funcionando como
antes...  Se não habilitarmos um ou  mais planos de bits em MapMask,
este(s) plano(s)  não  será(ão)  atualizado(s)!   Note  que  "Enable
Set/Reset"  diz ao circuito da placa VGA que deve ler os respectivos
bits de "Set/Reset" e  colocá-los  nos respectivos planos de bits...
mas, MapMask pode ou não permitir essa transferência!!!   Quanto  ao
registrador  BitMask,  vai bem obrigado (veja discussão sobre ele no
texto anterior).

    Hummm... virou bagunça!  Agora podemos  ter dados vindos de três
fontes:  da  CPU  (via  memória  do  sistema),  dos  latches,  e  do
registrador  Set/Reset.   Bem...  podemos  até  usar essa bagunça em
nosso favor!

    "Enable Set/Reset" e "Set/Reset"  pertencem ao mesmo circuito de
BitMask:  o controlador gráfico  (GC).   Só  que  o  índice (que é o
número do registro no circuito!) de "Set/Reset" é  0  e  de  "Enable
Set/Reset" é 1.

    Vamos a um exemplo com esses dois registradores:



 ┌─────────────────────────────────────────────────────────────────┐
 │  ; VGA3.ASM                                                     │
 │  ; Compile com:                                                 │
 │  ;                                                              │
 │  ;   TASM vga3                                                  │
 │  ;   TLINK /x/t vga3                                            │
 │  ;                                                              │
 │  ideal                                                          │
 │  model tiny                                                     │
 │  locals                                                         │
 │  jumps                                                          │
 │                                                                 │
 │  codeseg                                                        │
 │                                                                 │
 │  org 100h                                                       │
 │  start:                                                         │
 │      mov     ax,12h      ; Poe no modo 640x480                  │
 │      int     10h                                                │
 │                                                                 │
 │      mov     ax,0A000h   ; Faz ES = 0A000h                      │
 │      mov     es,ax                                              │
 │      sub     bx,bx       ; BX será o offset!                    │
 │                                                                 │
 │      mov     dx,03C4h                                           │
 │      mov     ax,0F02h    ; MapMask = 1111b                      │
 │      out     dx,ax                                              │
 │                                                                 │
 │      mov     dx,03CEh                                           │
 │      mov     ax,8008h    ; BitMask = 10000000b                  │
 │      out     dx,ax                                              │
 │      mov     ax,0500h    ; Set/Reset = 0101b                    │
 │      out     dx,ax                                              │
 │      mov     ax,0F01h    ; Enable Set/Reset = 1111b             │
 │      out     dx,ax                                              │
 │                                                                 │
 │      mov     al,[byte es:bx]     ; carrega os latches da VGA    │
 │                                  ;  note que AL não nos         │
 │                                  ;  interessa!!!                │
 │                                  ; Isso é necessário pq vamos   │
 │                                  ;  alterar apenas o bit 7. Os  │
 │                                  ;  demais são fornecidos pelos │
 │                                  ;  latches.                    │
 │                                                                 │
 │      mov     [byte es:bx],al     ; Escreve qualquer coisa...    │
 │                                  ;  AL aqui também não nos      │
 │                                  ;  interessa, já que Set/Reset │
 │                                  ;  é quem manda os dados para  │
 │                                  ;  os planos de bits.          │
 │                                                                 │
 │      sub     ah,ah       ; Espera uma tecla!                    │
 │      int     16h         ; ... senão não tem graça!!! :)        │
 │                                                                 │
 │      mov     ax,3        ; Volta p/ modo texto 80x25            │
 │      int     10h                                                │
 │                                                                 │
 │      int     20h         ; Fim do prog                          │
 │                                                                 │
 │  end start                                                      │
 └───────────────────────────────────────────────────────────────--┘



    Explicando a listagem acima:  Os quatro planos  são  habilitados
em MapMask... depois habilitamos somente o bit 7 em BitMask, seguido
pela   habilitação   dos  quatro  bits  de  "Set/Reset"  em  "Enable
Set/Reset".  Uma vez  que  os  quatro  planos estão habilitados (por
MapMask) e que os quatro  bits  de  "Set/Reset"  também  estão  (via
"Enable  Set/Reset"),  colocamos  em  "Set/Reset" os quatro bits que
queremos que  sejam  escritos  nos  planos:   0101b  (ou 05h).  Pois
bem... precisamos apenas carregar os latches e  depois  escrever  na
memória do sistema.

    Tudo bem, vc diz, mas qual é a grande  vantagem?!   Ora,  ora...
temos condições de alterar os quatro planos de bits ao mesmo tempo!!
E,  melhor  ainda,  estamos  em condição de setar até oito pixeis ao
mesmo tempo!!!!  Experimente trocar a linha:

 ┌─────────────────────────────────────────────────────────────────┐
 │      mov     ax,8008h    ; BitMask = 10000000b                  │
 └─────────────────────────────────────────────────────────────────┘

    por:

 ┌─────────────────────────────────────────────────────────────────┐
 │      mov     ax,0FF08h   ; BitMask = 11111111b                  │
 └─────────────────────────────────────────────────────────────────┘

    Você verá oito pixeis magenta  com  uma única escrita na memória
do sistema!!

    Outra  grande  vantagem  é  o  ganho de velocidade:  Na listagem
acima os dados que  vão  ser  colocados  nos  planos de bits não são
fornecidos diretamente pela CPU, mas sim  por  "Set/Reset"  e  pelos
latches.   Assim,  a  placa VGA não se interessa pelo conteúdo de AL
que foi escrito na memória do sistema e não adiciona WAIT STATES, já
que esse dado não vai para a memória de vídeo (fica só na memória do
sistema!!).

    É um grande avanço, né?!   Well... próximos avanços nos próximos
textos.
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  Por: Frederico Pissarra

    Até  agora  vimos  os  registradores  MapMask,  BitMask, "Enable
Set/Reset" e Set/Reset.  Vimos também que  MapMask  permite  ou  não
mudanças  nos  quatro  planos  de  bits  idependentemente.   BitMask
mascara os bits não desejáveis (e esses são lidos dos latches quando
escrevemos  na  memória).   Ainda  por  cima,  vimos  que é possível
atualizar  os  quatro  planos  de  bits  ao  mesmo  tempo  com  bits
diferentes usando "Enable Set/Reset"  e Set/Reset.  Isso tudo usando
o modo de escrita 0!

     Modo de escrita 1➠

    O modo de escrita 1  lida  somente  com os latches da placa VGA.
Com esse modo podemos copiar o conteúdo dos quatro planos de bits de
uma posição para outra com uma única instrução em assembly!

    Como  já  vimos,  os  latches  dos  quatro planos são carregados
sempre que fazemos uma leitura  na  memória  do sistema (em todos os
modos de escrita!).  No modo 1 isso também vale.  Só que nesse  modo
não é possível  escrever  nada  nos  planos de bits!!  Simplesmente,
quanto mandamos escrever numa  determinada  posição  da  memória  do
sistema,  os  latches  é que atualizarão essa posição.  No modo 1 os
registros Set/Reset, "Enable Set/Reset" e BitMask não funcionam para
nada. Assim, depois de setado o modo 1, podemos usar:

 ┌─────────────────────────────────────────────────────────────────┐
 │  REP MOVSB                                                      │
 └─────────────────────────────────────────────────────────────────┘

    Para copiarmos bytes dos quatro  planos  de vídeo de uma posição
da tela para outra.  E RAPIDO!  Só  que  tem  um  pequeno  problema:
Podemos  copiar  BYTES  e  não pixeis individuais!  Lembre-se que um
byte contém oito pixeis (com  cada  bit  de  um pixel em um plano de
bits!).  Se sua intenção é copiar um bloco inteiro,  porém  alinhado
por  BYTE, então o modo 1 é a escolha mais sensata.  Caso contrário,
use outro modo de escrita (o modo 0, por exemplo!).

    Ahhh... podemos conseguir o mesmo efeito do modo de escrita 1 no
modo de escrita 0!  Basta zerarmos  todos os bits de BitMask!  Pense
bem:  Se BitMask está completamente zerado,  então  os  dados  virão
apenas  dos  latches!   O  que  nos  deixa  com  um  modo de escrita
obsoleto, já que podemos fazer o mesmo trabalho no modo 0! :)



     O registrador MODE➠

    Para  ajustar o modo de escrita precisamos de um registrador.  O
registrador MODE é descrito abaixo:

                            7 6 5 4 3 2 1 0
                           ┌─┬─┬─┬─┬─┬─┬─┬─┐
                           │?│ │ │ │ │?│ │ │
                           └─┴─┴─┴─┴─┴─┴─┴─┘
                              └─┤ │ │   └─┤
                                │ │ │     └───── Modo de escrita
                                │ │ └─────────── Modo de leitura
                                │ └───────────── Odd/Even
                                └─────────────── Deslocamento

    O  único  campo  que  nos  interessa  no  momento  é  o "Modo de
escrita".  Por isso, para  modificar  o  modo,  precisaremos  ler  o
registro  MODE,  setar  o  modo de escrita, e depois reescrevê-lo...
para que não façamos mudanças nos  demais bits.  Os modos de escrita
válidos são os citados anteriormente (repare que esse  campo  tem  2
bits de tamanho!).

    O  registrador  MODE  faz  parte  do  circuito  GC  (o  mesmo de
BitMask, "Enable Set/Reset" e Set/Reset)  da placa VGA, seu índice é
5.

    Well... já que o  modo  1  é  obsoleto,  vou colocar aqui alguns
macros para facilitar o entendimento dos próximos códigos-fonte, ok?

 ┌─────────────────────────────────────────────────────────────────┐
 │  ; VGA.INC                                                      │
 │  ; Macros para VGA!                                             │
 │  ; Todos os macros alteram dx e ax                              │
 │                                                                 │
 │  ; Macro: Ajusta o modo de escrita                              │
 │  macro   SetWriteMode    mode                                   │
 │          ifdifi <mode>,<ah>                                     │
 │              mov     ah,mode                                    │
 │          endif                                                  │
 │          mov     dx,3CEh                                        │
 │          mov     al,5                                           │
 │          out     dx,al                                          │
 │          inc     dx                                             │
 │          in      al,dx                                          │
 │          and     ax,1111111100b                                 │
 │          or      al,ah                                          │
 │          out     dx,al                                          │
 │  endm                                                           │
 │                                                                 │
 │  ; Macro: Habilita/Mascara os planos de vídeo                   │
 │  macro   MapMask plane                                          │
 │          ifdifi  <plane>,<ah>                                   │
 │              mov     ah,plane                                   │
 │          endif                                                  │
 │          mov     al,2                                           │
 │          mov     dx,3C4h                                        │
 │          out     dx,ax                                          │
 │  endm                                                           │
 │                                                                 │



 │  ; Macro: Habilita os bits                                      │
 │  macro   BitMask bit                                            │
 │          ifdifi  <bit>,<ah>                                     │
 │              mov     ah,bit                                     │
 │          endif                                                  │
 │          mov     al,8                                           │
 │          mov     dx,3CEh                                        │
 │          out     dx,ax                                          │
 │  endm                                                           │
 │                                                                 │
 │  ; Macro: Altera "Enable Set/Reset"                             │
 │  macro EnableSetReset    bitmsk                                 │
 │          ifdifi  <bitmsk>,<ah>                                  │
 │              mov     ah,bitmsk                                  │
 │          endif                                                  │
 │          mov     al,1                                           │
 │          mov     dx,3CEh                                        │
 │          out     dx,ax                                          │
 │  endm                                                           │
 │                                                                 │
 │  ; Macro: Ajusta Set/Reset                                      │
 │  macro SetReset value                                           │
 │          ifdifi  <value>,<ah>                                   │
 │              mov     ah,value                                   │
 │          endif                                                  │
 │          sub     al,al       ; altera tb os flags..             │
 │          mov     dx,3CEh                                        │
 │          out     dx,ax                                          │
 │  endm                                                           │
 └─────────────────────────────────────────────────────────────────┘
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  Por: Frederico Pissarra

    O modo de  escrita  1  não  é  tão  útil,  como  vimos no último
texto...  A plca VGA possui algumas redundancias que  podem  parecer
desnessesárias  à primeira vista, como por exemplo o modo de escrita
3.  Nesse modo podemos despresar  o registrador "Enable Set/Reset" e
usar "Set/Reset" para ajustar os bits dos quatro planos de vídeo.

     Modo de escrita 3➠

    Well...  No modo 0 vimos como  atualizar  os  quatro  planos  de
bits de uma só vez...  Isso é feito setando  o  registrador  "Enable
Set/Reset"  e  "Set/Reset"...  usando  também MapMask e BitMask para
habilitarmos  os  planos  e   os  bits  desejados,  respectivamente.
Acontece que no modo 0 podemos ter uma mistura de  dados  vindos  da
CPU,  dos  latches e do registro Set/Reset... a mistura pode ser tão
confusa que podemos  ter  a  CPU  atualizando  um  plano e Set/Reset
outro.  É, sem sombra de dúvida, um recurso interessante e  bastante
útil...  mas  se  não  tomarmos  cuidado pode ser uma catastrofe, em
termos visuais!

    O modo de escrita 3 trabalha da  mesma forma que o modo 0 só que
"seta" automaticamente os quatro bits de "Enable  Set/Reset".   Isto
é,  a  CPU  não  escreve  nada  nos  planos de bits... isso fica sob
responsabilidade do registrador "Set/Reset".  O que a CPU escreve na
memória so sistema sofre uma operação  lógica  AND  com  o  conteúdo
atual  de  BitMask...   O resultado é usado como se fosse o BitMask!
(Para facilitar  as  coisas...  se  BitMask  for  11111111b  e a CPU
escrever 01100011b, então o "novo" BitMask será 01100011b, sem que o
registrador BitMask seja afetado!!)

    Com  esse  modo  de escrita descartamos a necessidade de ajustar
"Enable Set/Reset", eliminando a  confusão  que  pode ser causada no
modo  0...  descartamos  a  atualização  de  BitMask,  que  pode  feita
indiretamente pela  CPU...   Mas,  infelizmente  não  descartamos  a
necessidade  de leitura da memória do sistema para carga dos latches
e nem mesmo  a  necessidade  de  habilitarmos  os  planos de bits em
MapMask!  Se  MapMask  estiver  zerado  nenhum  plano  de  bit  será
atualizado,  lembre-se  sempre disso!!!  Isso é válido para TODOS os
modos de escrita!

    Eis um exemplo  prático  do  uso  do  modo  de escrita 3...  Uma
rotina que traça uma linha horizontal:



 ┌──────────────────────────────────────────────────────────────────┐
 │  ideal                                                           │
 │  model small,c                                                   │
 │  locals                                                          │
 │  jumps                                                           │
 │  p386                                                            │
 │                                                                  │
 │  ; inclui os macros definidos no último texto!                   │
 │  include "VGA.INC"                                               │
 │                                                                  │
 │  SCREEN_SEGMENT  equ 0A000h                                      │
 │                                                                  │
 │  ; Tamanho de uma linha... (modo 640x480)                        │
 │  LINE_SIZE       equ 80                                          │
 │                                                                  │
 │  ; Coordenadas máximas...                                        │
 │  MAX_X_POS       equ 639                                         │
 │  MAX_Y_POS       equ 479                                         │
 │                                                                  │
 │  global  grHorizLine:proc                                        │
 │  global  grVertLine:proc                                         │
 │  global  setGraphMode:proc                                       │
 │  global  setTextMode:proc                                        │
 │                                                                  │
 │  codeseg                                                         │
 │                                                                  │
 │  ;*** DESENHA LINHA HORIZONTAL ***                               │
 │  proc    grHorizLine                                             │
 │  arg     left:word, right:word, y:word, color:word               │
 │  local   bitmask1:byte, bitmask2:byte                            │
 │  uses    si, di                                                  │
 │                                                                  │
 │          ; Verifica se a coordenada Y é válida...                │
 │          mov     ax,[y]                                          │
 │          or      ax,ax                                           │
 │          js      @@grHorizLineExit                               │
 │                                                                  │
 │          cmp     ax,MAX_Y_POS                                    │
 │          ja      @@grHorizLineExit                               │
 │                                                                  │
 │          ; Verifica validade das coordenadas "left" e "right"... │
 │          mov     ax,[left]                                       │
 │          cmp     ax,[right]                                      │
 │          jb      @@noSwap                                        │
 │                                                                  │
 │          ; Troca "left" por "right"                              │
 │          ;  se "right" for menor que "left".                     │
 │          xchg    ax,[left]                                       │
 │          mov     [right],ax                                      │
 │                                                                  │
 │  @@noSwap:                                                       │
 │          ; Verifica a validade das coordenadas "left" e "right"  │
 │          cmp     ax,MAX_X_POS    ; "left" é valido?              │
 │          ja      @@grHorizLineExit                               │
 │                                                                  │
 │          or      [right],0       ; "right" é valido?             │
 │          js      @@grHorizLineExit                               │
 │                                                                  │
 │          WriteMode   3     ; Ajusta no modo de escrita 3.        │



 │          BitMask     0FFh  ; BitMask totalmente setado!          │
 │          MapMask     1111b ; Habilita todos os quatro planos     │
 │                            ;  de bits.                           │
 │          SetReset    <[byte color]> ; Ajusta a cor desejada...   │
 │                                                                  │
 │          mov     ax,SCREEN_SEGMENT                               │
 │          mov     es,ax   ; ES = segmento de vídeo.               │
 │                                                                  │
 │          ; Calcula os offsets das colunas...                     │
 │          mov     si,[left]                                       │
 │          mov     di,[right]                                      │
 │          shr     si,3        ; si = offset da coluna 'left'      │
 │          shr     di,3        ; di = offset da coluna 'right'     │
 │                                                                  │
 │          ; Calcula o offset da linha 'y'                         │
 │          mov     bx,[y]                                          │
 │          mov     ax,LINE_SIZE                                    │
 │          mul     bx                                              │
 │          mov     bx,ax   ; BX contém o offset da linha.          │
 │                                                                  │
 │          ; Pré-calcula a mascara da coluna 'left'                │
 │          mov     cx,[left]                                       │
 │          mov     ch,cl                                           │
 │          and     ch,111b                                         │
 │          mov     cl,8                                            │
 │          sub     cl,ch                                           │
 │          mov     ah,0FFh                                         │
 │          shl     ah,cl                                           │
 │          not     ah                                              │
 │          mov     [bitmask1],ah                                   │
 │                                                                  │
 │          ; pré-calcula a mascara da coluna 'right'               │
 │          mov     cx,[right]                                      │
 │          and     cl,111b                                         │
 │          inc     cl                                              │
 │          mov     ah,0FFh                                         │
 │          shr     ah,cl                                           │
 │          not     ah                                              │
 │          mov     [bitmask2],ah                                   │
 │                                                                  │
 │          ; Verifica se apenas um byte será atualizado.           │
 │          cmp     si,di                                           │
 │          jz      @@OneByte                                       │
 │                                                                  │
 │          mov     ah,[bitmask1]                                   │
 │          xchg    [es:bx+si],ah  ; Escreve na memória da video... │
 │                                 ; ... XCHG primeiro lê o que     │
 │                                 ;  está no operando destino,     │
 │                                 ;  depois efetua a troca.        │
 │                                 ;  Com isso economizamos um MOV! │
 │          inc     si                                              │
 │          cmp     si,di                                           │
 │          je      @@doMask2                                       │
 │                                                                  │
 │  @@MiddleDraw:                                                   │
 │          mov     [byte es:bx+si],0ffh    ; Linha cheia...        │
 │                                          ; Não precisamos        │
 │                                          ;  carregar os latches  │
 │                                          ;  pq todos os bits     │



 │                                          ;  serão atualizados!   │
 │          inc     si                                              │
 │          cmp     si,di                                           │
 │          jne     @@MiddleDraw                                    │
 │                                                                  │
 │  @@doMask2:                                                      │
 │          mov     ah,[bitmask2]                                   │
 │          xchg    [es:bx+si],ah   ; Escreve na memória de vídeo   │
 │          jmp     @@HorizLineEnd                                  │
 │                                                                  │
 │  @@OneByte:                                                      │
 │          and     ah,[bitmask1]                                   │
 │          xchg    [es:bx+si],ah                                   │
 │                                                                  │
 │  @@HorizLineEnd:                                                 │
 │          WriteMode 0         ; Poe no modo 0 de novo...          │
 │                              ;  Necessário somente se essa       │
 │                              ;  rotina for usada em conjunto     │
 │                              ;  com as rotinas da BIOS ou de     │
 │                              ;  seu compilados (p.ex: BGIs!).    │
 │  @@grHorizLineExit:                                              │
 │          ret                                                     │
 │  endp                                                            │
 │                                                                  │
 │  ;;*** DESENHA LINHA VERTICAL ***                                │
 │  proc    grVertLine                                              │
 │  arg     x:word, top:word, bottom:word, color:byte               │
 │  uses    si, di                                                  │
 │                                                                  │
 │          ; Verifica se X está na faixa                           │
 │          mov     ax,[x]                                          │
 │          or      ax,ax               ; x < 0?                    │
 │          js      @@grVertLineExit                                │
 │                                                                  │
 │          cmp     ax,MAX_X_POS        ; x > 639?                  │
 │          ja      @@grVertLineExit                                │
 │                                                                  │
 │          ; Verifica se precisa fazer swap                        │
 │          mov     ax,[top]                                        │
 │          cmp     ax,[bottom]                                     │
 │          jb      @@noSwap                                        │
 │                                                                  │
 │          xchg    ax,[bottom]                                     │
 │          mov     [top],ax                                        │
 │                                                                  │
 │  @@noSwap:                                                       │
 │          ; Verifica se as coordenadas "Y" estão dentro da faixa. │
 │          cmp     ax,MAX_Y_POS                                    │
 │          ja      @@grVertLineExit                                │
 │                                                                  │
 │          cmp     [bottom],0                                      │
 │          js      @@grVertLineExit                                │
 │                                                                  │
 │          mov     ax,SCREEN_SEGMENT                               │
 │          mov     es,ax                                           │
 │                                                                  │
 │          WriteMode 3                                             │
 │          BitMask 0FFh                                            │
 │          MapMask 0Fh                                             │



 │          SetReset <[byte color]>                                 │
 │                                                                  │
 │          mov     si,[top]                                        │
 │                                                                  │
 │          mov     ax,LINE_SIZE                                    │
 │          mul     si                                              │
 │          mov     bx,ax       ; BX contém o offset da linha       │
 │                                                                  │
 │          mov     di,[x]                                          │
 │          mov     cx,di                                           │
 │          shr     di,3        ; DI contém o offset da coluna      │
 │                                                                  │
 │          and     cl,111b                                         │
 │          mov     ah,10000000b                                    │
 │          shr     ah,cl                                           │
 │                                                                  │
 │  @@SetPixelLoop:                                                 │
 │          mov     cl,ah                                           │
 │          xchg    [es:bx+di],cl                                   │
 │          add     bx,LINE_SIZE                                    │
 │          inc     si                                              │
 │          cmp     si,[bottom]                                     │
 │          jbe     @@SetPixelLoop                                  │
 │                                                                  │
 │          WriteMode 0                                             │
 │                                                                  │
 │  @@grVertLineExit:                                               │
 │          ret                                                     │
 │  endp                                                            │
 │                                                                  │
 │  proc    setGraphMode                                            │
 │      mov     ax,12h                                              │
 │      int     10h                                                 │
 │      ret                                                         │
 │  endp                                                            │
 │                                                                  │
 │  proc    setTextMode                                             │
 │      mov     ax,3                                                │
 │      int     10h                                                 │
 │      ret                                                         │
 │  endp                                                            │
 │                                                                  │
 │  end                                                             │
 └──────────────────────────────────────────────────────────────────┘

    Não sei se percebeu a engenhosidade dessa pequena rotina...  Ela
pré-calcula  os  bitmasks do inicio e do fim da linha...  Se a linha
está contida somente em um  byte  então  fazemos  um AND com os dois
bitmasks  pré-calculados  pra  obter  o  bitmask   necessário   para
atualizar  um  único byte...  Suponha que queiramos traçar uma linha
de (2,0) até (6,0). Eis os bitmasks:

 ┌─────────────────────────────────────────────────────────────────┐
 │  BitMask1    =   00111111b   ; BitMask do inicio da linha       │
 │  BitMask2    =   11111110b   ; BitMask do fim da linha          │
 │ ───────────────────────────-                                    │
 │  BitMask3    =   00111110b   ; BitMask1 AND BitMask2            │
 └─────────────────────────────────────────────────────────────────┘



    Ok...  E se a linha ocupar  2 bytes?!  Por exemplo, de (2,0) até
(11,0)...  O ponto (2,0) está, com certeza, no primeiro byte...  mas
o ponto (11,0) não (já que um byte suporta apenas 8 pixeis!).  Então
calculados os dois bitmasks:

 ┌─────────────────────────────────────────────────────────────────┐
 │  BitMask1    =   00111111b   ; BitMask do inicio da linha       │
 │  BitMask2    =   11110000b   ; BitMask do fim da linha          │
 └─────────────────────────────────────────────────────────────────┘

    Dai  escrevemos o primeiro byte com o bitmask1 e o segundo com o
bitmask2.  Se a linha ocupar mais  de  2 bytes o processo é o mesmo,
só que os bytes intermediários  terão  bitmasks  totalmente  setados
(não necessitando, neste caso, carregar os latches!).

    Na   mesma  listagem  temos  a  rotina  de  traçagem  de  linhas
verticais... dê uma olhada nela. É bem mais simples que grHorizLine!

    No próximo texto:  O modo de  escrita  2!  E depois, os modos de
256 cores! (finalmente, né?!)
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                RBT   │   Curso de Assembly   │   Aula Nº 26 ┃ ┃
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  Por: Frederico Pissarra

    Vistos os três  primeiros  modos  de  escrita  da placa VGA, nos
resta apenas o modo 2.  Esse modo  é  muito  útil  para  escrita  de
bitmaps  nos modos de vídeo de 16 cores...  Ele trabalha basicamente
como o  registro  Set/Reset,  sem  que  tenhamos  que  manusear esse
registro explicitamente.

     O modo de escrita 2➠

    Uma vez setado, o modo de escrita 2  habilita  todos  os  quatro
bits  de "Enable Set/Reset", da mesma forma que o modo de escrita 3.
No entanto, diferente do modo de escrita 3, o registro Set/Reset não
precisa ser ajustado com  a  "cor"  desejada.  Neste modo o registro
Set/Reset é setado com os quatro bits menos significativos  enviados
pela  CPU  à  memória do sistema.  Precisaremos mascarar os bits não
desejados em BitMask, bem como  ajustar  os planos de bits desejados
em MapMask.

    Repare na força  deste  modo  de  vídeo...  poderemos  atualizar
pixels  com a "cor" que quisermos sem usarmos Set/Reset diretamente,
e sem termos que setar os  bits de "Enable Set/Reset".  Mas, teremos
que ajustar BitMask para não setarmos todos os oito pixels  no  byte
que estamos escrevendo dos planos de bits...  Eis um exemplo do modo
de escrita 2:



 ┌─────────────────────────────────────────────────────────────────┐
 │  ideal                                                          │
 │  model tiny                                                     │
 │  locals                                                         │
 │  jumps                                                          │
 │                                                                 │
 │  include "vga.inc"                                              │
 │                                                                 │
 │  LINE_LENGTH     equ     80                                     │
 │                                                                 │
 │  codeseg                                                        │
 │  org     100h                                                   │
 │  start:                                                         │
 │      mov     ax,12h  ; Ajusta modo de vídeo 640x480x16          │
 │      int     10h                                                │
 │                                                                 │
 │      WriteMode   2      ; modo de escrita 2                     │
 │      MapMask     1111b  ; todos os planos de bits               │
 │                                                                 │
 │      mov     ax,0A000h                                          │
 │      mov     es,ax      ; ES = segmento de vídeo                │
 │                                                                 │
 │      sub     di,di      ; DI = offset                           │
 │      sub     bl,bl      ; usaremos BL p/ contar as linhas.      │
 │                                                                 │
 │      mov     ah,10000000b ; ah = bitmask inicial                │
 │      mov     cl,1000b     ; CL = cor inicial                    │
 │                                                                 │
 │  @@1:                                                           │
 │      BitMask ah                                                 │
 │      mov     al,[es:di]  ; carrega latches                      │
 │      mov     [es:di],cl  ; escreve nos planos                   │
 │      ror     ah,1        ; rotaciona bitmask                    │
 │      inc     cl          ; próxima cor                          │
 │      cmp     cl,10000b   ; ops... ultrapassou?!                 │
 │      jb      @@1         ; não... então permanece no loop.      │
 │      mov     cl,1000b    ; ajusta p/ cor inicial.               │
 │      add     di,LINE_LENGTH ; próxima linha                     │
 │      inc     bl          ; incrementa contador de linhas        │
 │      cmp     bl,8        ; chegou na linha 8?                   │
 │      jb      @@1         ; não... continua no loop.             │
 │                                                                 │
 │      sub     ah,ah       ; espera tecla, senão não tem graça!   │
 │      int     16h                                                │
 │                                                                 │
 │      mov     ax,3        ; volta ao modo texto...               │
 │      int     10h                                                │
 │                                                                 │
 │      int     20h         ; fim do programa.                     │
 │  end start                                                      │
 └─────────────────────────────────────────────────────────────────┘

    Esse modo parece mais fácil  que os demais, não?!  Aparentemente
é... mas tenha em mente que os outros modos de  escrita  também  têm
suas vantagens.

     E os modos de leitura?!➠



    Na  grande maioria das vezes não é vantajoso lermos os dados que
estão nos planos de bits...  Isso  porque  a memória de vídeo é mais
lenta que a memória do sistema (mesmo a memória do sistema associada
à placa VGA é mais lenta que o resto da memória  do  seu  PC...  por
causa  dos WAIT STATES que a placa VGA adiciona para não se perder -
a velocidade da CPU é maior  que  a  do circuito de vídeo!).

    Para  encerrarmos  os  modos  de  16 cores é interessante vermos
alguma coisa sobre o modo  de  leitura  0,  que  é o modo default da
placa VGA.

    No modo de leitura 0 devemos ler um plano de bits por vez... não
é possível ler mais que um plano ao mesmo tempo... e ainda,  MapMask
não é responsável pela habilitação dos planos de bits.  Nesse caso a
leitura é feita através de uma ramificação do circuito de vídeo... a
escrita é feita por  outra.   O  registrador  BitMask também não tem
nenhum efeito na leitura.  Por isso a seleção dos bits fica por  sua
conta (através de instruções AND).

    A  seleção  do  plano  de  bits  que  será  lido  é  feito  pelo
registrador ReadMap que é descrito abaixo:

         Registrador READMAP✱

                7 6 5 4 3 2 1 0
               ┌─┬─┬─┬─┬─┬─┬─┬─┐
               │?│?│?│?│?│?│ │ │
               └─┴─┴─┴─┴─┴─┴─┴─┘
                            └─┴───── Seleção do plano de bits

    ReadMap  também  faz  parte do circuito GC...  Então é acessível
via endereços de I/O 3CEh  e  3CFh,  da  mesma forma que BitMask e o
registro de MODE, só que seu índice é 4.

    Uma nota importante é a de que, embora a leitura seja feita  por
uma ramificação diferente (por isso a existência de ReadMap), quando
fazemos   uma   leitura   dos   planos   de  bits,  os  latches  são
automaticamente carregados... e  os  latches pertencem à ramificação
do  circuito  de escrita (somente os latches dos planos selecionados
por MapMask são carregados, lembra?!).

    E zé fini... pelo menos até o próximo texto! :)


